Influence of Scattering Phase Function on Estimated Thermal Properties of Al2O3 Ceramic Foams

  • Shuyuan ZhaoEmail author
  • Xinyang Sun
  • Quanqing Que
  • Wenjiao ZhangEmail author


Open ceramic foams are usually constituted of three-dimensional networks with randomly interconnected solid struts and fluid within pores. The heat transport within this material can be understood as the coupling of conduction, convection as well as radiation. The cooperative control of different heat transfer mechanisms is critical to successful design and optimization of components working at high temperatures. An answer to this problem usually requires good knowledge and understanding of the corresponding thermal properties in a wide range of temperatures. In the present paper, an inverse identification method was developed to determine coupled thermal properties from transient thermal measurements at temperatures up to 900 K for full description of conduction/radiation heat transports of foam media with absorbing, emitting, and anisotropic scattering effects. The influence of postulated phase function on the identified equivalent extinction coefficient, scattering albedo, anisotropic scattering factor, and two-phase thermal conductivity was discussed for better understanding of thermal behavior within ceramic foams. The estimated thermal properties under each postulated phase function of the sample at transient temperature profiles were used to calculate equivalent thermal conductivities, which were then compared with the measured results at more than 1000 K. The accordance between them indicated that linear anisotropic scattering phase function demonstrates superiority in description of radiation behavior within Al2O3 ceramic foam.


Anisotropic scattering Ceramic foams Inverse method Phase function Thermal properties 

List of symbols


Specific heat of the sample (J·kg−1·K−1)


Anisotropic scattering factor of phase function

\( \tilde{g} \)

Equivalent scattering factor of phase function


Total radiation intensity (W·m−2)


Total blackbody radiation intensity (W·m−2)


Radiative thermal conductivity (W·m−1·K−1)


Thickness of ceramic foam sample (m)


Conductive heat flux (W·m−2)


Radiant heat flux (W·m−2)


Time (s)


Temperature (K)


Initial temperature (K)


Cold surface temperature (K)


Hot surface temperature (K)


Spatial coordinate through the sample thickness (m)

Greek symbols


Extinction coefficient (m−1)


Weighted extinction coefficient (m−1)

\( \tilde{\beta } \)

Equivalent extinction coefficient (m−1)

\( \tilde{\varvec{\beta }}^{\varvec{ * }} \)

Weighted equivalent extinction coefficient (m−1)


Emissity of the upper bounding surface


Emissity of the lower bounding surface


Polar angle rad


Scattering angle rad

λtwo- phase

Two-phase thermal conductivity (W·m−1·K−1)

\( \tilde{\lambda }_{{two{ - }phase}} \)

Equivalent two-phase thermal conductivity (W·m−1·K−1)


Cosine of the angle between x-axis and direction of radiation propagation


Cosine of the angle between x-axis and another direction of radiation


Density (kg·m−3)


Stefan–Boltzmann constant (W·m−2·K−4)


Absorption coefficient (m−1)


Scattering coefficient (m−1)

\( \sigma_{s}^{*} \)

Weighted scattering coefficient (m−1)


Scattering phase function

\( {\tilde{\varPhi}} \)

Equivalent scattering phase function


Scattering albedo

\( \omega^{*} \)

Weighted scattering albedo

\( \tilde{\omega } \)

Equivalent scattering albedo

\( \tilde{\varvec{\omega }}^{\varvec{*}} \)

Weighted equivalent scattering albedo



This work was supported by Pre-research Key Laboratory Foundation of General Armament Department of China (Grant No. JZ20180035).


  1. 1.
    A. Ortona, S. Gianella, D. Gaia, SIC foams for high temperature applications, in Advances in Bioceramics and Porous Ceramics IV: Ceramic Engineering and Science Proceedings (2011), pp. 153–161Google Scholar
  2. 2.
    W.G. Xu, H.T. Zhang, Z.M. Yang, J.S. Zhang, The effective thermal conductivity of three-dimensional reticulated foam materials. J. Porous Mater. 16, 65–71 (2009)CrossRefGoogle Scholar
  3. 3.
    M. Wang, N. Pan, Modeling and prediction of the effective thermal conductivity of random open-cell porous foams. Int. J. Heat Mass Transf. 51, 1325–1331 (2008)CrossRefGoogle Scholar
  4. 4.
    M.A. Mendes, S. Ray, D. Trimis, A simple and efficient method for the evaluation of effective thermal conductivity of open-cell foam-like structures. Int. J. Heat Mass Transf. 66, 412–422 (2013)CrossRefGoogle Scholar
  5. 5.
    M.A. Mendes, S. Ray, D. Trimis, An improved model for the effective thermal conductivity of open-cell porous foams. Int. J. Heat Mass Transf. 75, 224–230 (2014)CrossRefGoogle Scholar
  6. 6.
    M.A. Mendes, S. Ray, D. Trimis, Evaluation of effective thermal conductivity of porous foams in presence of arbitrary working fluid. Int. J. Therm. Sci. 79, 260–265 (2014)CrossRefGoogle Scholar
  7. 7.
    R. Singh, H.S. Kasana, Computational aspects of effective thermal conductivity of highly porous metal foams. Appl. Therm. Eng. 24, 1841–1849 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Coquard, D. Baillis, Numerical investigation of conductive heat transfer in high-porosity foams. Acta Mater. 57, 5466–5479 (2009)CrossRefGoogle Scholar
  9. 9.
    G.N. Dulnev, Heat transfer through solid disperse systems. J. Eng. Phys. Thermophys. 9, 275–279 (1965)CrossRefGoogle Scholar
  10. 10.
    A. Bhattacharya, V.V. Calmidi, R.L. Mahajan, Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 45, 1017–1031 (2002)CrossRefGoogle Scholar
  11. 11.
    L.R. Glicksmann, M.A. Schuetz, Low Density Cellular Plastics (Chapman & Hall, London, 1994), pp. 104–152CrossRefGoogle Scholar
  12. 12.
    R. Coquard, D. Rochais, D. Baillis, Conductive and radiative heat transfer in ceramic and metal foams at fire temperatures. Fire Technol. 48, 699–732 (2012)CrossRefGoogle Scholar
  13. 13.
    P. Ranut, On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl. Therm. Eng. 101, 496–524 (2016)CrossRefGoogle Scholar
  14. 14.
    P. Kumar, F. Topin, J. Vicente, Determination of effective thermal conductivity from geometrical properties: application to open cell foams. Int. J. Therm. Sci. 81, 13–28 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Kumar, F. Topin, Simultaneous determination of intrinsic solid phase conductivity and effective thermal conductivity of Kelvin like foams. Appl. Therm. Eng. 71, 536–547 (2014)CrossRefGoogle Scholar
  16. 16.
    B. Dietrich, G. Schell, E.C. Bucharsky, R. Oberacker, M.J. Hoffmann, W. Schabel, M. Kind, H. Martin, Determination of the thermal properties of ceramic sponges. Int. J. Heat Mass Transf. 53, 198–205 (2010)CrossRefGoogle Scholar
  17. 17.
    J. Randrianalisoa, D. Baillis, C.L. Martin, R. Dendievel, Microstructure effects on thermal conductivity of open-cell foams generated from the Laguerree Voronoï tessellation method. Int. J. Therm. Sci. 98, 277–286 (2015)CrossRefGoogle Scholar
  18. 18.
    C.Y. Zhao, T.J. Lu, H.P. Hodson, Thermal radiation in ultralight metal foams with open cells. Int. J. Heat Mass Transf. 47, 2927–2939 (2004)CrossRefGoogle Scholar
  19. 19.
    L.R. Glicksman, J. Steward, The measurement of the morphology of closet cell which control the overall thermal conductivity, in Third Symposium on Insulation Materials: Testing and Applications (ASTM, Quebec, 1997), pp. 307–334Google Scholar
  20. 20.
    D. Doermann, J.F. Sacadura, Heat transfer in open cell foam. ASME J. Heat Transf. 118, 88–93 (1996)CrossRefGoogle Scholar
  21. 21.
    J. Kuhn, H.P. Ebert, M.C. Arduini-Schuster, D. Büttner, J. Fricke, Thermal transport in polystyrene and polyurethane foam insulations. Int. J. Heat Mass Transf. 35, 1795–1801 (1992)CrossRefGoogle Scholar
  22. 22.
    E. Placido, M.C. Arduini-Schuster, J. Kuhn, Thermal properties predictive model for insulating foams. Infrared Phys. Technol. 46, 219–231 (2005)ADSCrossRefGoogle Scholar
  23. 23.
    R. Coquard, D. Baillis, D. Quenard, Radiative properties of expanded polystyrene foams. J. Heat Transf. 131, 012702.1–012702.10 (2009)Google Scholar
  24. 24.
    C. Tseng, A.D. Swanson, R. Viskanta, R.L. Sikorski, M.Y. Chen, Effect of foam properties on radiative properties of open-cell silicon carbide foams. J. Quant. Spectrosc. Radiat. Transf. 113, 1503–1507 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    P. Parthasarathy, P. Habisreuther, N. Zarzalis, Identification of radiative properties of reticulated ceramic porous inert media using ray tracing technique. J. Quant. Spectrosc. Radiat. Transf. 113, 1961–1969 (2012)ADSCrossRefGoogle Scholar
  26. 26.
    S. Cunsolo, M. Oliviero, W.M. Harris, A. Andreozzi, N. Bianco, W.K.S. Chiu, V. Naso, Monte Carlo determination of radiative properties of metal foams: comparison between idealized and real cell structures. Int. J. Therm. Sci. 87, 94–102 (2015)CrossRefGoogle Scholar
  27. 27.
    B. Dietrich, T. Fischedick, S. Heissler, P. Weidler, C. Wöll, M. Kind, Optical parameters for characterization of thermal radiation in ceramic sponges—experimental results and correlation. Int. J. Heat Mass Transf. 79, 655–665 (2014)CrossRefGoogle Scholar
  28. 28.
    T. Fischedick, M. Kind, B. Dietrich, High temperature two-phase thermal conductivity of ceramic sponges with stagnant fluid—experimental results and correlation including thermal radiation. Int. J. Therm. Sci. 96, 1–11 (2015)CrossRefGoogle Scholar
  29. 29.
    R. Coquard, D. Rochais, D. Baillis, Modelling of the coupled conductive and radiative heat transfer in NiCrAl foams from phothothermal measurements and X-ray tomography. Spec. Top. Rev. Porous Media 2, 249–265 (2011)CrossRefGoogle Scholar
  30. 30.
    R. Coquard, B. Rousseau, D. Baillis, H. Gomart, Investigations of the radiative properties of Al–NiP foams using tomographic images and stereoscopic micrographs. Int. J. Heat Mass Transf. 55, 1606–1619 (2012)CrossRefGoogle Scholar
  31. 31.
    S. Cunsolo, R. Coquard, D. Baillis, Wilson.K.S. Chiu, Nicola. Bianco, Radiative properties of irregular open cell solid foams. Int. J. Therm. Sci. 117, 77–89 (2017)CrossRefGoogle Scholar
  32. 32.
    B. Zeghondy, E. Iacona, J. Taine, Determination of the anisotropic radiative properties of a porous material by radiative distribution function identification (RDFI). Int. J. Heat Mass Transf. 49, 2810–2819 (2006)CrossRefGoogle Scholar
  33. 33.
    B. Zeghondy, E. Iacona, J. Taine, Experimental and RDFI calculated radiative properties of a mullite foam. Int. J. Heat Mass Transf. 49, 3702–3707 (2006)CrossRefGoogle Scholar
  34. 34.
    M. Tancrez, J. Taine, Direct identification of absorption and scattering coefficients and phase function of a porous medium by a Monte Carlo technique. Int. J. Heat Mass Transf. 47, 373–383 (2004)CrossRefGoogle Scholar
  35. 35.
    J. Petrasch, P. Wyss, A. Steinfeld, Tomography-based Monte Carlo determination of radiative properties of reticulate porous ceramics. J. Quant. Spectrosc. Radiat. Transf. 105, 180–197 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    T.J. Hendricks, J.R. Howell, Absorption/scattering coefficients and scattering phase functions in reticulated porous ceramics. J. Heat Transf. 118, 79–87 (1996)CrossRefGoogle Scholar
  37. 37.
    D. Baillis, M. Raynaud, J.F. Sacadura, Determination of spectral radiative properties of open cell foam: model validation. J. Thermophys. Heat Transf. 14, 137–143 (2000)CrossRefGoogle Scholar
  38. 38.
    M.J. Hale, M.S. Bohn, Measurement of the radiative transport properties of reticulated alumina foams, in ASME/ASES Joint Solar Energy Conference, Washington DC (USA) (1993), pp. 507–515Google Scholar
  39. 39.
    P.F. Hsu, J.R. Howell, Measurements of thermal conductivity and optical properties of porous partially stabilized zirconia. Exp. Heat Transf. 5, 293–313 (1992)ADSCrossRefGoogle Scholar
  40. 40.
    R. Coquard, D. Rochais, D. Baillis, Experimental investigations of the coupled conductive and radiative heat transfer in metallic/ceramic foams. Int. J. Heat Mass Transf. 52, 4907–4918 (2009)CrossRefGoogle Scholar
  41. 41.
    M. Grujicic, C.L. Zhao, S.B. Biggers, J.M. Kennedy, D.R. Morgan, Heat transfer and effective thermal conductivity analyses in carbon-based foams for use in thermal protection systems. Proc. Inst. Mech. Eng. L J. Mater. Des. Appl. 219, 217–230 (2006)Google Scholar
  42. 42.
    C.C. Tseng, R.L. Sikorski, R. Viskanta, M.Y. Chen, Effect of foam properties on heat transfer in high temperature open-cell foam inserts. J. Am. Ceram. Soc. 95, 2015–2021 (2012)CrossRefGoogle Scholar
  43. 43.
    D.W. Marquardt, An algorithm for least-squares estimation of non-linear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963)CrossRefGoogle Scholar
  44. 44.
    S.Y. Zhao, B.M. Zhang, S.Y. Du, An inverse analysis to determine conductive and radiative properties of a fibrous medium. J. Quant. Spectrosc. Radiat. Transf. 110, 1111–1123 (2009)ADSCrossRefGoogle Scholar
  45. 45.
    K. Daryabeigi, Heat Transfer in High-Temperature Fibrous Insulation. AIAA Paper 2002-3332Google Scholar
  46. 46.
    M.F. Modest, Radiative Heat Transfer, International Edition, 2nd edn. (McGraw Hill, New York, 2003), pp. 225–250Google Scholar
  47. 47.
    E.M. Sparrow, R.D. Cess, Radiation Heat Transfer, Augmented edition (McGraw-Hill, New York, 1978), pp. 255–271Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Science and Technology on Advanced Composites in Special Environments LaboratoryHarbin Institute of TechnologyHarbinChina
  2. 2.School of Aeronautics and AstronauticsHarbin Institute of TechnologyHarbinChina
  3. 3.Engineering CollegeNortheast Agricultural UniversityHarbinChina

Personalised recommendations