The Magnetocaloric Properties Around the Second-Order Magnetic Transition in \(\hbox {Ni}_{2}\hbox {Mn}_{1.4}\hbox {In}_{\mathrm{0.6-x}}\hbox {R}_{\mathrm{x}} (\hbox {R}= \hbox {Si, Ge, Al})\)

  • Y. R. Li
  • H. L. Su
  • H. Y. Liu
  • H. Z. Luo
  • X. F. Dai
  • G. D. Liu
  • Y. LiEmail author


By combining the first-principles with Monte Carlo method, we investigate the magnetic exchange interactions and the magnetic entropy changes in the vicinity of the second-order transition in \({\hbox {Ni}}_{2}{\hbox {Mn}}_{1.4}{\hbox {In}}_{0.6}{\hbox {(R)}}\,{\hbox {(R}}= \hbox {Si, Ge, Al})\) alloys with R substituting for In atoms. The results show that the substitution of R for In atoms can lead to the reduction of the Curie temperature and an increase in the total magnetic moments of the systems. The Si substitution gives rise to the increase in the magnetic entropy changes, whereas the Ge and Al substitutions make the entropy change decrease. In addition, our calculated Curie temperatures for \(\hbox {Ni}_{2}\hbox {Mn}_{1.4}\hbox {In}_{\mathrm{0.6-x}}\hbox {Si}_{\mathrm{x}} (x = 0.04, 0.08, 0.12, 0.16)\) are in good agreement with available experimental results.


Exchange interactions Magnetocaloric properties Monte Carlo method Ni–Mn–In alloy 


  1. 1.
    V.K. Pecharsky, K.A. Gschneidner, Phys. Rev. Lett. 78, 4494 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    H. Wada, Y. Tanabe, Appl. Phys. Lett. 79, 3302 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    F. Hu, B. Shen, J. Sun, G. Wu, Phys. Rev. B. 64, 132412 (2001)ADSCrossRefGoogle Scholar
  4. 4.
    J. Liu, T. Gottschal, K.P. Skokov, J.D. Moore, O. Gutfleisch, Nat. Mater 11, 620 (2012)ADSCrossRefGoogle Scholar
  5. 5.
    G.V. Brown, J. Appl. Phys. 47, 3673 (1976)ADSCrossRefGoogle Scholar
  6. 6.
    V.K. Pecharsky, K.A. Gschneidner, Appl. Phys. Lett. 70, 3299 (1997)ADSCrossRefGoogle Scholar
  7. 7.
    G.H. Wen, R.K. Zheng, X.X. Zhang, W.H. Wang, J.L. Chen, G.H. Wu, J. Appl. Phys. 91, 8537 (2002)ADSCrossRefGoogle Scholar
  8. 8.
    E. Brück, M. llyn, A.M. Tishin, O. Tegus, J. Magn. Magn. Mater 290, 8 (2005)ADSCrossRefGoogle Scholar
  9. 9.
    H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, Y. Akishige, Phys. B 328, 114 (2003)ADSCrossRefGoogle Scholar
  10. 10.
    A. Planes, L. Mañosa, M. Acet, J. Phys, Condens. Matter. 21, 233201 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    B. Li, W.J. Re, Appl. Phys. Lett. 95, 172506 (2009)ADSCrossRefGoogle Scholar
  12. 12.
    J. Du, Q. Zheng, W.J. Ren, W.J. Feng, X.G. Liu, Z.D. Zhang, J. Phys. D Appl. Phys. 40, 5523 (2007)ADSCrossRefGoogle Scholar
  13. 13.
    A.K. Pathak, M. Khan, I. Dubenko, S. Stadler, N. Ali, Appl. Phys. Lett. 90, 262504 (2007)ADSCrossRefGoogle Scholar
  14. 14.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Nat. Mater. 4, 450 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    A. Grünebohm, D. Comtesse, A. Hucht, M.E. Gruner, A. Maslovskaya, P. Entel, IEEE Trans. Magn. 50, 11 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Krenke, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B. 73, 174413 (2006)ADSCrossRefGoogle Scholar
  17. 17.
    T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, Phys. Rev. B. 75, 104414 (2007)ADSCrossRefGoogle Scholar
  18. 18.
    C. Jing, J.P. Chen, Z. Li, Y.F. Qiao, B.G. Kang, S.X. Cao, J.C. Zhang, J. Alloys Compd. 475, 1 (2009)CrossRefGoogle Scholar
  19. 19.
    M.K. Chattopadhyay, M.A. Manekar, V.K. Sharma, P. Arora, P. Tiwari, M.K. Tiwari, S.B. Roy, J. Appl. Phys. 108, 073909 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    T. Miyamoto, W. Ito, R.Y. Umetsu, R. Kainuma, T. Kanomata, K. Ishida, Scr. Mater. 62, 151 (2010)CrossRefGoogle Scholar
  21. 21.
    J.H. Chen, N.M. Bruno, I. Karaman, Y.J. Huang, J.G. Li, J.H. Ross Jr., J. Appl. Phys. 116, 203901 (2014)ADSCrossRefGoogle Scholar
  22. 22.
    A.K. Pathak, I. Dubenko, S. Stadler, N. Ali, J. Phys. D Appl. Phys. 41, 202004 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    A.K. Pathak, I. Dubenko, J.C. Mabon, S. Stadler, N. Ali, J. Phys. D Appl. Phys. 42, 045004 (2009)ADSCrossRefGoogle Scholar
  24. 24.
    V.D. Buchelnikov, P. Entel, S.V. Taskaev, V.V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M.E. Gruner, S.K. Nayak, Phys. Rev. B 78, 184427 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    V.D. Buchelnikov, V.V. Sokolovskiy, H.C. Herper, H. Ebert, M.E. Gruner, S.V. Taskaev, V.V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, P. Entel, Phys. Rev. B 81, 094411 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    V.V. Sokolovskiy, R.R. Fayzullin, V.D. Buchelnikov, M.O. Drobosyuk, S.V. Taskaev, V.V. Khovaylo, J. Refrig. 37, 273 (2014)CrossRefGoogle Scholar
  27. 27.
    R. Masrour, A. Jabar, A. Benyoussef, M. Hamedoun, E.K. Hlil, J. Magn. Magn. Mater. 401, 91 (2016)ADSCrossRefGoogle Scholar
  28. 28.
    R. Masrour, A. Jabar, E.K. Hlil, Intermetallics 91, 120 (2017)CrossRefGoogle Scholar
  29. 29.
    S. Singh, L. Caron, S.W. D’Souza, T. Fichtner, G. Porcari, S. Fabbrici, C. Shekhar, S. Chadov, M. Solzi, C. Felser, Adv. Mater. 28, 3321 (2016)CrossRefGoogle Scholar
  30. 30.
    H. Ebert, D. Ködderitzsch, J. Minár, Rep. Prog. Phys. 74, 096501 (2011)ADSCrossRefGoogle Scholar
  31. 31.
    A. Liechtenstein, M. Katsnelson, V. Gubanov, J. Phys. F Met. Phys. 14, L125 (1984)ADSCrossRefGoogle Scholar
  32. 32.
    A. Liechtenstein, M. Katsnelson, V. Antropov, V. Gubanov, J. Magn. Magn. Mater. 67, 65 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    F.Y. Wu, Rev. Mod. Phys. 54, 235 (1982)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Li, B.G. Liu, Phys. Rev. Lett. 96, 217201 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Y. R. Li
    • 1
  • H. L. Su
    • 1
  • H. Y. Liu
    • 1
  • H. Z. Luo
    • 1
  • X. F. Dai
    • 1
  • G. D. Liu
    • 1
  • Y. Li
    • 1
    Email author
  1. 1.School of Materials Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations