Properties of a Terpolymer-Treated Soil: A 13C NMR Study

  • Leesa M. Smith
  • Ayyavu Chandramohan
  • Parvin Karimineghlani
  • Srinath R. Iyengar
  • Howard J. M. HanleyEmail author


The Young’s modulus and the secant modulus of a terpolymer-treated soil as a function of the polymer’s characteristics are discussed in the context of a more general inelastic property known as the toughness parameter. The soil chosen was a sample of the State of Qatar subsoil. The terpolymer, designated TPAM, was characterized by a backbone structure of acrylamide, anionic carboxylate, and cationic (3-acrylamidopropyl-trimethylammonium chloride) repeat units. The backbone unit ratio was estimated from 13C NMR analyses. TPAM was synthesized by straightforward NaOH hydrolyses of an acrylamide/cationic copolymer. The correlations between the NaOH molarity of the hydrolysis solution, with the corresponding ratio of the anionic and cationic units, were shown to have a significant influence on the value of the toughness parameter. It is speculated that controlling the anionic and cationic ratio of a terpolymer is a general approach to optimize the toughness parameter of treated soils. Measurements of the molecular weight of TPAM were made, and comments on the importance of this feature are given. The equivalent viscosity was also recorded. It is pointed out that the work is particularly relevant to the practical problem of subsoil pavement stabilization in which the terpolymer acts as a soil binder. Suggestions on further work are given.


ASTM tests 13C NMR Molecular weight Polyampholyte terpolymer properties Subsoil stability Toughness parameter Viscosity Young’s/secant modulus 



The authors would like to acknowledge the Qatar National Research Fund (a member of the Qatar Foundation) for their support under the NPRP award [NPRP 5-508-2-204]. We are also especially grateful to Professor Svetlana Sukhishvili for her insightful comments and suggestions.


  1. 1.
    H. Luo, Z. Liu, D. Zhang, Polym. J. 50, 21 (2018)CrossRefGoogle Scholar
  2. 2.
    A.K. Rodriguez, A. Chandramohan, S.R. Iyengar, H.S. Bazzi, E. Masad, D. Little, H.J.M. Hanley, Int. J. Pavement Eng. 19, 467 (2016)CrossRefGoogle Scholar
  3. 3.
    S.R. Iyengar, E. Masad, A.K. Rodriguez, H.S. Bazzi, D. Little, H.J.M. Hanley, J. Mater. Civ. Eng. 25, 472 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Rabiee, A. Ershad-Langroudi, H. Jamshidi, Rev. Chem. Eng. 30, 501 (2014)CrossRefGoogle Scholar
  5. 5.
    S.-Z. Li, R.-K. Xu, Colloids Surf. A 326, 157 (2008)CrossRefGoogle Scholar
  6. 6.
    A.H. Moghimi, J. Hamdan, J. Shamshuddin, A.W. Samsuri, A. Abtahi, Appl. Environ. Soil Sci., Article ID 252861. (2013)
  7. 7.
    W.J. Orts, A. Roa-Espinosa, R.E. Sojka, G.M. Glenn, S.H. Imam, K. Erlacher, J.S. Pedersen, J. Mater. Civ. Eng. 19, 58 (2007)CrossRefGoogle Scholar
  8. 8.
    H. Heller, R. Keren, Soil Sci. Soc. Am. J. 66, 19 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    ASTM, D2487, Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System (American Society for Testing and Materials, West Conshohocken, 2011)Google Scholar
  10. 10.
    ASTM, D0422-63, Standard Test Method for Particle-Size Analysis of Soils (American Society for Testing and Materials, West Conshohocken, 2007)Google Scholar
  11. 11.
    K. Matyjaszewski, Macromol. Symp. 174, 51 (2001)CrossRefGoogle Scholar
  12. 12.
    M.L. Patrizi, D. Capitani, G. Masci, Polymer 50, 467 (2009)CrossRefGoogle Scholar
  13. 13.
    R.G. Ezell, I. Gorman, B. Lokitz, N. Ayres, C.L. McCormick, J. Polym. Sci. Part A Polym. Chem. 44, 3125 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M.J. Fevola, J.K. Bridges, M.G. Kellum, R.D. Hester, C.L. McCormick, J. Polym. Sci. Part A Polym. Chem. 42, 3268 (2004). [J. Appl. Polym. Sci. 94, 24 (2004)] Google Scholar
  15. 15.
    J. Ma, H. Zheng, M. Tan, L. Liu, W. Chen, Q. Guan, X. Zheng, J. Appl. Polym. Sci. (2013). CrossRefGoogle Scholar
  16. 16.
    A. Rabiee, J. Vinyl Addit. Technol. 16, 111 (2010)Google Scholar
  17. 17.
    Q. Yang, C. Song, Q. Chen, P. Zhang, Wang P. J. Polym. Sci. Part B Polym. Phys. 46, 2465 (2008)ADSCrossRefGoogle Scholar
  18. 18.
    J. Zu, W.P. Zhao, C.X. Wang, Y.M. Wu, Express Polym. Lett. 4, 275 (2010)CrossRefGoogle Scholar
  19. 19.
    K. Yasuda, K. Okajima, K. Kamide, Polym. J. Lond. UK 20, 1101 (1988)Google Scholar
  20. 20.
    O.S. Bag, S. Alam, G.N. Mather, Smart Mater. Struct. 13, 1258 (2004)ADSCrossRefGoogle Scholar
  21. 21.
    K. Newman, J.S. Tingle, Emulsion polymers for soil stabilization soils, in Report 2004 FAA Worldwide Airport Technology Transfer Conference, Atlantic City, New Jersey, USAGoogle Scholar
  22. 22.
    K.J. McCarthy, C.W. Burkhardt, D.P. Parazak, J. Appl. Polym. Sci. 33, 1699 (1987)CrossRefGoogle Scholar
  23. 23.
    R. Aksberg, L. Wagberg, J. Appl. Polym. Sci. 38, 297 (1989)CrossRefGoogle Scholar
  24. 24.
    A. Rabiee, M.E. Zeynali, H. Baharvand, Iran. Polym. J. 14, 603 (2005)Google Scholar
  25. 25.
    P. Somasundararan, G.E. Agar, J. Colloid Interface Sci. 24, 433 (1967)ADSCrossRefGoogle Scholar
  26. 26.
    J. Plank, G. Bassioni, Z. Naturforch 62b, 1277 (2007)CrossRefGoogle Scholar
  27. 27.
    O.S. Pokrovsky, J.A. Mirlczarski, O. Barres, J. Schott, Langmuir 16, 2677 (2000)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia
  2. 2.Department of Mechanical EngineeringTexas A&M University at QatarDohaQatar
  3. 3.Material Science and Engineering DepartmentTexas A&M UniversityCollege StationUSA
  4. 4.Applied Mathematics, Research School of Physics and EngineeringAustralian National UniversityCanberraAustralia

Personalised recommendations