Advertisement

Kolmogorov–Smirnov Test for Statistical Characterization of Photopyroelectric Signals Obtained from Maize Seeds

  • J. E. Rojas-Lima
  • F. A. Domínguez-PachecoEmail author
  • C. Hernández-Aguilar
  • L. M. Hernández-Simón
  • A. Cruz-Orea
ICPPP 19
  • 57 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

Photothermal techniques are useful experimental methodologies for characterization of the optical and thermal parameters of different materials like maize seeds due to its advantages such as non-invasive and non-destructive nature. Among these techniques, the photopyroelectric microscopy was applied in the present research to obtain thermal images where each of their coordinates represents amplitude values of the photopyroelectric signal, indicating differences in the structural components of both genotypes of maize seeds. The random variations of the amplitude of the photopyroelectric signal caused by the heterogeneous nature of the thermal properties of the samples, were represented by histograms to identify the probability density function underlying the data sample, observing that in the case of the maize seed with floury structure, the amplitude variations could be described statistically by the transformed Moyal distribution when a linear transformation with censored data was applied to the data set obtained from the thermal image with a significance level of 0.001, according to the Kolmogorov–Smirnov statistical test for goodness-of-fit. In the case of the photopyroelectric signal obtained from a maize seed with crystalline structure, it was not possible to describe statistically the amplitude variations of the signal by means of the transformed Moyal distribution because it did not pass the Kolmogorov–Smirnov test, so the same statistical test for goodness of fit was applied to both genotypes of maize seeds for analyzing the populations of the data sample, in order to find the distributions that best fit each population with a significance level of at least 0.05 increasing in this way the power of the test. The distributions with the best fit were logistic, log-logistic, uniform, least extreme value and normal.

Keywords

Kolmogorov–Smirnov test Modified Moyal distribution Photopyroelectric microscopy Photopyroelectric signal Photothermal techniques Stochastic modeling 

Notes

Acknowledgments

The authors thank the Instituto Politécnico Nacional (IPN), through the CONACYT, COFAA, EDI, SIP Scholarship Projects. One of the authors (J.E. Rojas-Lima) is grateful for all the support provided by the IPN through the PIAS-2016-2017 Academic Project. One of the authors (A. Cruz-Orea) is grateful for the economic support of CONACYT through Project 241330. Also, we thank Ing. Esther Ayala at the Physics Department of CINVESTAV-IPN for her technical support.

References

  1. 1.
    A. Domínguez-Pacheco, C. H-Aguilar, A. Cruz-Orea, E.I. Alemán, E. M-Ortiz, Int. J. Thermophys. 34, 1499 (2013)ADSCrossRefGoogle Scholar
  2. 2.
    A. Mandelis, M.M. Zver, J. Appl. Phys. 57, 4421 (1985)ADSCrossRefGoogle Scholar
  3. 3.
    A. Salazar, A. Oleaga, Rev. Sci. Instrum. 76, 034901 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    J.A. Balderas-López, A. Mandelis, Int. J. Thermophys. 24, 463 (2003)CrossRefGoogle Scholar
  5. 5.
    B.R. Briseño-Tepepa, J.L. Jiménez-Pérez, R. Saavedra, R. González-Ballesteros, E. Suaste, A. Cruz-Orea, Int. J. Thermophys. 29, 2200 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    A. Domínguez-Pacheco, C. Hernández-Aguilar, R. Zepeda-Bautista, E. Martínez-Ortiz, A. Cruz-Orea, Superficies y Vacío 25, 92 (2012)Google Scholar
  7. 7.
    H.M. Taylor, S. Karlin, An Introduction To Stochastic Modeling (Academic Press CRC, Boca Raton, 2014)zbMATHGoogle Scholar
  8. 8.
    J. Walpole, J.A. Papin, S.M. Peirce, Annu. Rev. Chem. Biomol. Eng. 15, 137 (2013)CrossRefGoogle Scholar
  9. 9.
    S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16 (Springer Science & Business Media, Berlin, 2013)zbMATHGoogle Scholar
  10. 10.
    J. Banks, J.S. Carson, B.L. Nelson, D.M. Nicol, Discrete-Event system simulation, 3rd edn. (Prentice Hall, Upper Saddle River, 2000)Google Scholar
  11. 11.
    T.T. Soong, Fundamentals of Probability and Statistics for Engineers (John Wiley & Sons Ltd., England, 2004)zbMATHGoogle Scholar
  12. 12.
    C. Walk, Handbook on Statistical Distributions for Experimentalists, No. SUF-PYF/96-01 (University of Stockholm Press, Stockholm, 1996)Google Scholar
  13. 13.
    J.E. Moyal, Phil. Mag. 46, 263 (1955)CrossRefGoogle Scholar
  14. 14.
    G.M. Cordeiro, J.S. Nobre, R.R. Pescim, E.M. Ortega, Int. J. Res. Rev. Appl. Sci. 10, 171 (2012)MathSciNetGoogle Scholar
  15. 15.
    S.G. Meintanis, Sankhyā: The Indian. J. Stat. 66, 304 (2004)Google Scholar
  16. 16.
    A.K. Dey, D. Kundu, Commun. Stat. Theory. Methods 39, 280 (2009)Google Scholar
  17. 17.
    T. Kernane, Z. Raizah, Estimation of the Parameters of Extreme Value Distributions from Truncated Data Via the EM Algorithm, < hal-00503252v2 > (2014)Google Scholar
  18. 18.
    R.E. Walpole, R.H. Myers, S.L. Myers, K. Ye, Probability & Statistics for Engineers & Scientist (Pearson Education Inc, USA, 2012)zbMATHGoogle Scholar
  19. 19.
    F.J. Massey Jr., J. Am. Stat. Assoc. 46, 68 (1951)CrossRefGoogle Scholar
  20. 20.
    A. Justel, D. Peña, R. Zamar, Stat. Probabil. Lett. 35, 251 (1997)CrossRefGoogle Scholar
  21. 21.
    H.W. Lilliefors, J. Am. Stat. Assoc. 62, 399 (1967)CrossRefGoogle Scholar
  22. 22.
    M.C. Romay, M.J. Millard, J.C. Glaubitz, J.A. Peiffer, K.L. Swarts, T.M. Casstevens, M.D. McMullen, Genome Biol. 14, R55 (2013)CrossRefGoogle Scholar
  23. 23.
    J.T. Alexander, V. Bochko, B. Martinkauppi, S. Saranwong, T. Mantere, Int. J. Spectrosc. (2013).  https://doi.org/10.1155/2013/341402 CrossRefGoogle Scholar
  24. 24.
    J.E. Rojas-Lima, A. Domínguez-Pacheco, C. Hernández-Aguilar, A. Cruz-Orea, Int. J. Thermophys. 37, 98 (2016)ADSCrossRefGoogle Scholar
  25. 25.
    J.L. Devore, Probability & Statistics for Engineering and the Sciences, 8th edn. (Boston MA, USA, Brooks Cole, 2010), p. 687Google Scholar
  26. 26.
    K.L. Wuensch, in Chi-Square Tests, ed. by M. Lovric. International Encyclopedia of Statistical Science, vol. 252 (Springer, Berlin, Heidelberg, 2011)Google Scholar
  27. 27.
    I.T. Young, J. Histochem. Cytochem. 25, 935 (1977)CrossRefGoogle Scholar
  28. 28.
    StatPoint, Inc., Probability Distributions, (Statgraphics Centurion XVI.II, 2005)Google Scholar
  29. 29.
    W.J. Da Silva, B.C. Vidal, M.E.Q. Martins, H. Vargas, A.C. Pereira, M. Zerbetto, L.C. Miranda, Nature 362, 417 (1993)ADSCrossRefGoogle Scholar
  30. 30.
    K.Y. Sastry, L. Froyen, J. Vleugels, E.H. Bentefour, C. Glorieux, Int. J. Thermophys. 25, 1611 (2004)ADSCrossRefGoogle Scholar
  31. 31.
    W.W. Hines, D.C. Montgomery, Probability and Statistics in Engineering and Management Science (John Wiley, New York, 1990)zbMATHGoogle Scholar
  32. 32.
    A. Ortega-Corona, M.J. Guerrero-Herrera, R.E. Preciado-Ortiz, Diversidad y distribución del maíz nativo y sus parientes silvestres en México, 1a Edición, (BBA, Edit. Colegio de Posgraduados) (INIFAP, México, 2013)Google Scholar
  33. 33.
    O.R. Leyva-Ovalle, A. Carballo-Carballo, J.A. Mejía-Contreras, M.G. Vázquez-Carrillo, Revista Fitotecnia Mexicana 25, 355 (2002)Google Scholar
  34. 34.
    F.J. Pérez, A. Carballo-Carballo, A. Santacruz-Varela, A. Hernández-Livera, J.C. Molina-Moreno, Agricultura técnica en México 33, 53 (2007)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Escuela Superior de Ingeniería Mecánica y Eléctrica (ESIME), Sección de Estudios de Posgrado e Investigación (SEPI)Instituto Politécnico Nacional (IPN)Mexico CityMéxico
  2. 2.Departamento de FísicaCentro de Investigación y de Estudios Avanzados (CINVESTAV) del IPNMexico CityMéxico

Personalised recommendations