Solid–Liquid Phase Equilibria, Molecular Interaction and Microstructural Studies on (N-(2-ethanol)-p-nitroaniline + N-(2-acetoxyethyl)-p-nitroaniline) Binary Mixtures

  • Salim CheloucheEmail author
  • Djalal TracheEmail author
  • Simão P. Pinho
  • Kamel Khimeche
  • Abderrahmane Mezroua
  • Mokhtar Benziane


Differential scanning calorimetry (DSC) is used to investigate the thermal properties of N-(2-ethanol)-p-nitroaniline + N-(2-acetoxyethyl)-p-nitroaniline, and their binary systems. The experimental results demonstrate that the studied binary system presents a simple eutectic behavior and the corresponding mole fraction (xeu) of N-(2-ethanol)-p-nitroaniline at the eutectic point is 0.5486, whereas the temperature (Teu) is found to be equal to 363.6 K. The quality of the solid–liquid equilibria (SLE) data has been checked by thermodynamic consistency tests, presenting good quality factor. The SLE data have been correlated by means of Wilson, NRTL, and UNIQUAC equations. The three models describe satisfactorily the phase diagram as the root-mean-square deviations for the equilibrium temperatures vary from 1.25 K to 2.07 K. Nevertheless, the Wilson model provides the best correlation results. The three equations have also been used to compute excess thermodynamic functions viz. excess Gibbs energy, enthalpy and entropy. The obtained results revealed a sensitive positive deviation to ideality thus demonstrating the nature of the interactions between the compounds forming the mixture. Microstructural studies have been carried out by FTIR, XRD and optical microscopy showing weak molecular interactions for the eutectic mixture.


Eutectic mixture Excess thermodynamic properties Microstructure characterization Molecular interaction Propellant stability Semi-empirical models 

Supplementary material

10765_2018_2452_MOESM1_ESM.doc (205 kb)
Supplementary material 1 (DOC 205 kb)


  1. 1.
    J.P. Agrawal, High Energy Materials: Propellants, Explosives and Pyrotechnics (Wiley, Hoboken, 2010)CrossRefGoogle Scholar
  2. 2.
    D. Trache, A.F. Tarchoun, J. Mater. Sci. 53, 100 (2018)ADSCrossRefGoogle Scholar
  3. 3.
    S. Wilker, G. Heeb, B. Vogelsanger, J. Petržílek, J. Skládal, Propellants Explos. Pyrotech. 32, 135 (2007)CrossRefGoogle Scholar
  4. 4.
    M.A. Bohn, in Nitrocellulose–Supply, Ageing and Characterization Meeting (2007), pp. 24–25Google Scholar
  5. 5.
    D. Trache, K. Khimeche, A. Dahmani, Int. J. Thermophys. 34, 226 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    D. Trache, K. Khimeche, Fire Mater. 37, 328 (2013)CrossRefGoogle Scholar
  7. 7.
    W.P. de Klerk, Propellants Explos. Pyrotech. 40, 388 (2015)CrossRefGoogle Scholar
  8. 8.
    R. Baetens, B.P. Jelle, A. Gustavsen, Eng. Build. 42, 1361 (2010)CrossRefGoogle Scholar
  9. 9.
    P. Liu, J.-W. Hao, L.-P. Mo, Z.-H. Zhang, RSC Adv. 5, 48675 (2015)CrossRefGoogle Scholar
  10. 10.
    J.D. Gibson, (US Patent 5,387,295, 1995)Google Scholar
  11. 11.
    F. Zou, W. Zhuang, J. Wu, J. Zhou, Q. Liu, Y. Chen, J. Xie, C. Zhu, T. Guo, H. Ying, J. Chem. Thermodyn. 77, 14 (2014)CrossRefGoogle Scholar
  12. 12.
    D. Trache, K. Khimeche, R. Benelmir, A. Dahmani, Thermochim. Acta 565, 8 (2013)CrossRefGoogle Scholar
  13. 13.
    D. Wei, X. Zhang, H. Li, J. Chem. Thermodyn. 60, 94 (2013)CrossRefGoogle Scholar
  14. 14.
    M.H. Keshavarz, A.R. Akbarzadeh, R. Rahimi, M. Jafari, M. Pasandideh, R. Sadeghi, Fluid Phase Equilib. 427, 46 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Jain, G. Yang, S.H. Yalkowsky, Ind. Eng. Chem. Res. 43, 7618 (2004)CrossRefGoogle Scholar
  16. 16.
    E. Baum, Chemical Property Estimation: Theory and Application (CRC Press, Boca Raton, 1997)Google Scholar
  17. 17.
    H. Gamsjäger, J.W. Lorimer, P. Scharlin, D.G. Shaw, Pure Appl. Chem. 80, 233 (2008)CrossRefGoogle Scholar
  18. 18.
    M. Matsuoka, R. Ozawa, J. Cryst. Growth 96, 596 (1989)ADSCrossRefGoogle Scholar
  19. 19.
    J.W. Kang, V. Diky, R.D. Chirico, J.W. Magee, C.D. Muzny, A.F. Kazakov, K. Kroenlein, M. Frenkel, J. Chem. Eng. Data 59, 2283 (2014)CrossRefGoogle Scholar
  20. 20.
    D. Trache, K. Khimeche, M. Benziane, A. Dahmani, J. Therm. Anal. Calorim. 112, 215 (2013)CrossRefGoogle Scholar
  21. 21.
    U. Domańska, J. Łachwa, J. Chem. Thermodyn. 37, 692 (2005)CrossRefGoogle Scholar
  22. 22.
    J.M. Prausnitz, R.N. Lichtenthaler, E.G. de Azevedo, Molecular Thermodynamics of Fluid-Phase Equilibria (Pearson Education, Upper Saddle River, 1998)Google Scholar
  23. 23.
    R. Reddi, V.K. Satuluri, U. Rai, R. Rai, J. Therm. Anal. Calorim. 107, 377 (2012)CrossRefGoogle Scholar
  24. 24.
    R. Reddi, V. Kumar Satuluri, R. Rai, J. Therm. Anal. Calorim. 107, 183 (2011)CrossRefGoogle Scholar
  25. 25.
    A. Iddaoudi, N. Selhaoui, M.A. Amar, K. Mahdouk, A. Aharoune, L. Bouirden, J. Therm. Anal. Calorim. 110, 923 (2012)CrossRefGoogle Scholar
  26. 26.
    J.A. Nelder, R. Mead, Comput. J. 7, 308 (1965)MathSciNetCrossRefGoogle Scholar
  27. 27.
    T. Hofman, I. Nagata, Fluid Phase Equilib. 25, 113 (1986)CrossRefGoogle Scholar
  28. 28.
    P. Gupta, T. Agrawal, S.S. Das, N.B. Singh, J. Chem. Thermodyn. 48, 291 (2012)CrossRefGoogle Scholar
  29. 29.
    B. Sharma, N. Sharma, M. Rambal, Thermochim. Acta 206, 71 (1992)CrossRefGoogle Scholar
  30. 30.
    B. Sharma, R. Kant, R. Sharma, S. Tandon, Mater. Chem. Phys. 82, 216 (2003)CrossRefGoogle Scholar
  31. 31.
    S.M. Nayeem, Karbala Int. J. Mod. Sci. 3, 176 (2017)Google Scholar
  32. 32.
    M. Okuniewski, K. Paduszyński, U. Domańska, J. Phys. Chem. 120, 12928 (2016)CrossRefGoogle Scholar
  33. 33.
    S.V. Latha, G.L. Flower, K.R. Reddy, C.N. Rao, A. Ratnakar, J. Solut. Chem. 46, 305 (2017)CrossRefGoogle Scholar
  34. 34.
    P. Larkin, Infrared and Raman Spectroscopy: Principles and Spectral Interpretation (Elsevier, Amsterdam, 2011)Google Scholar
  35. 35.
    G. Socrates, Infrared and Raman Characteristic Group Frequencies: Tables and Charts (Wiley, Hoboken, 2004)Google Scholar
  36. 36.
    S. Jeyavijayan, Indian J. Pure Appl. Phys. 43, 269 (2016)Google Scholar
  37. 37.
    M.K. Trivedi, A. Branton, D. Trivedi, G. Nayak, K. Bairwa, S. Jana, Insights Anal. Electrochem. 1, 5 (2015)Google Scholar
  38. 38.
    A. Altomare, N. Corriero, C. Cuocci, A. Falcicchio, A. Moliterni, R. Rizzi, Cryst. Res. Technol. 50, 737 (2015)CrossRefGoogle Scholar
  39. 39.
    N. Singh, B. Shukla, Cryst. Res. Technol. 20, 345 (1985)CrossRefGoogle Scholar
  40. 40.
    J. Hunt, K. Jackson, Trans. Metall. Soc. AIME 236, 843 (1966)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UER Procédés EnergétiquesEcole Militaire Polytechnique, EMPAlgiersAlgeria
  2. 2.Associate Laboratory LSRE-LCM, Departamento de Tecnologia Química e BiológicaInstituto Politécnico de BragançaBragançaPortugal
  3. 3.Mountain Research Center - CIMOPolytechnic Institute of BragançaBragançaPortugal
  4. 4.Ecole Supérieure du Matériel ESMAlgiersAlgeria

Personalised recommendations