Advertisement

Concentration-Dependent Diffusion Coefficients of Binary Gas Mixtures Using a Loschmidt Cell with Holographic Interferometry

Part I: Multiple Experiments
  • Ludger Wolff
  • Pouria Zangi
  • Thorsten Brands
  • Michael Heinrich Rausch
  • Hans-Jürgen Koß
  • Andreas Paul Fröba
  • André Bardow
Article

Abstract

An improved experimental setup and data evaluation procedure are presented for a Loschmidt cell combined with interferometry to measure concentration-dependent binary diffusion coefficients. We overcome long-standing discrepancies about the concentration dependence found in the literature. The systematic analysis of the residuals from parameter estimation enabled the improvement of the experimental setup and the identification of relevant fitting parameters. In particular, we found that it is crucial to account for uncertainties (1) in the initial conditions, (2) in the thermal stability of the optical setup, and (3) in camera calibration. The improved experimental setup and data evaluation procedure are validated with diffusion measurements of the system helium–krypton. The concentration dependence of the diffusion coefficient is successfully determined from multiple experiments with gas mixtures of various initial compositions in the half-cells of the Loschmidt cell. The agreement with literature data and the excellent quality of fit allow for high confidence in the results. In Part II of this paper (Wolff et al., in Int J Thermophys, 2018,  https://doi.org/10.1007/s10765-018-2451-7), the improved measurement setup is combined with a refined diffusion model to determine concentration-dependent diffusion coefficients from single measurements of mixing pure gases.

Keywords

Concentration dependence Diffusion Interferometry Loschmidt 

Notes

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) with Grants BA 2884/7-1 and FR 1709/13-1.

Supplementary material

10765_2018_2450_MOESM1_ESM.pdf (139 kb)
Supplementary material 1 (pdf 139 KB)

References

  1. 1.
    I.G. Economou, J.C. de Hemptinne, R. Dohrn, E. Hendriks, K. Keskinen, O. Baudouin, Chem. Eng. Res. Des. 92, 2795 (2014).  https://doi.org/10.1016/j.cherd.2014.10.022 CrossRefGoogle Scholar
  2. 2.
    E.L. Cussler, Diffusion—Mass Transfer in Fluid Systems (Cambridge University Press, Cambridge, 2007)Google Scholar
  3. 3.
    Diffusion in Minerals and Melts (2010). https://pubs.geoscienceworld.org/rimg/issue/72/1. Accessed 19 July 2018
  4. 4.
    J. Amalberti, X. Antoine, P. Burnard, Math. Geosci. 50, 417 (2018).  https://doi.org/10.1007/s11004-018-9732-3 MathSciNetCrossRefGoogle Scholar
  5. 5.
    Z.A. Makrodimitri, A. Heller, T.M. Koller, M.H. Rausch, M.S.H. Fleys, A.R. Bos, G.P. van der Laan, A.P. Fröba, I.G. Economou, J. Chem. Thermodyn. 91, 101 (2015).  https://doi.org/10.1016/j.jct.2015.07.026 CrossRefGoogle Scholar
  6. 6.
    O.A. Moultos, I.N. Tsimpanogiannis, A.Z. Panagiotopoulos, J.P.M. Trusler, I.G. Economou, J. Phys. Chem. B 120, 12890 (2016).  https://doi.org/10.1021/acs.jpcb.6b04651 CrossRefGoogle Scholar
  7. 7.
    B. Jäger, E. Bich, J. Chem. Phys. 146, 214302 (2017).  https://doi.org/10.1063/1.4984100 ADSCrossRefGoogle Scholar
  8. 8.
    F. Sharipov, V.J. Benites, J. Chem. Phys. 147, 224302 (2017).  https://doi.org/10.1063/1.5001711 ADSCrossRefGoogle Scholar
  9. 9.
    A. Heller, C. Giraudet, Z.A. Makrodimitri, M.S.H. Fleys, J. Chen, G.P. van der Laan, I.G. Economou, M.H. Rausch, A.P. Fröba, J. Phys. Chem. B (2016).  https://doi.org/10.1021/acs.jpcb.6b08117 CrossRefGoogle Scholar
  10. 10.
    T.M. Koller, A. Heller, M.H. Rausch, P. Wasserscheid, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 119, 8583 (2015).  https://doi.org/10.1021/acs.jpcb.5b02659 CrossRefGoogle Scholar
  11. 11.
    A. Heller, T.M. Koller, M.H. Rausch, M.S.H. Fleys, A.N.R. Bos, G.P. van der Laan, Z.A. Makrodimitri, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 118, 3981 (2014).  https://doi.org/10.1021/jp500300y CrossRefGoogle Scholar
  12. 12.
    T. Kugler, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3169 (2015).  https://doi.org/10.1007/s10765-015-1981-5 ADSCrossRefGoogle Scholar
  13. 13.
    F. Yue, P. Fu, Y. Liu, K. Bie, H. Zhou, Optik 156, 825 (2018).  https://doi.org/10.1016/j.ijleo.2017.12.069 ADSCrossRefGoogle Scholar
  14. 14.
    J. Castañer, C.A. Ramírez, Chem. Eng. Commun. 205, 1167 (2018).  https://doi.org/10.1080/00986445.2018.1437033 CrossRefGoogle Scholar
  15. 15.
    J.L. Medina, C.A. Ramírez, Chem. Eng. Commun. 203, 1625 (2016).  https://doi.org/10.1080/00986445.2016.1223059 CrossRefGoogle Scholar
  16. 16.
    A. Kalyakin, A. Volkov, A. Vylkov, E. Gorbova, D. Medvedev, A. Demin, P. Tsiakaras, J. Electroanal. Chem. 808, 133 (2018).  https://doi.org/10.1016/j.jelechem.2017.12.001 CrossRefGoogle Scholar
  17. 17.
    C. Liu, W.S. McGivern, J.A. Manion, H. Wang, J. Phys. Chem. A 120, 8065 (2016).  https://doi.org/10.1021/acs.jpca.6b08261 CrossRefGoogle Scholar
  18. 18.
    J. Amalberti, P. Burnard, L. Tissandier, D. Laporte, Chem. Geol. 480, 35 (2018).  https://doi.org/10.1016/j.chemgeo.2017.05.017 ADSCrossRefGoogle Scholar
  19. 19.
    P.S. Arora, P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 54, 117 (1978).  https://doi.org/10.1016/0009-2614(78)85678-4 ADSCrossRefGoogle Scholar
  20. 20.
    G.R. Staker, P.J. Dunlop, K.R. Harris, T.N. Bell, Chem. Phys. Lett. 32, 561 (1975).  https://doi.org/10.1016/0009-2614(75)85240-7 ADSCrossRefGoogle Scholar
  21. 21.
    G.R. Staker, M.A. Yabsley, J.M. Symons, P.J. Dunlop, J. Chem. Soc. Faraday Trans. 1, 825 (1974).  https://doi.org/10.1039/F19747000825 CrossRefGoogle Scholar
  22. 22.
    R.J.J. van Heijningen, J.P. Harpe, J.J.M. Beenakker, Physica 38, 1 (1968).  https://doi.org/10.1016/0031-8914(68)90059-1 ADSCrossRefGoogle Scholar
  23. 23.
    L.A. Woolf, R. Mills, D.G. Leaist, C. Erkey, A. Akgerman, A.J. Easteal, D.G. Miller, J.G. Albright, S.F.Y. Li, W. Wakeham, Diffusion coefficients, chap. 9, in Measurement of the Transport Properties of Fluids. Experimental Thermodynamics VIII, ed. by W.A. Wakeham, A. Nagashima, J.V. Sengers (Blackwell Scientific Publications, Oxford, 1991), pp. 228–320Google Scholar
  24. 24.
    J. Winkelmann, Diffusion in Gases, Liquids and Electrolytes A: Gases in Gases, Liquids and Their Mixtures (Springer, Berlin, 2007).  https://doi.org/10.1007/978-3-540-49718-9_1 CrossRefGoogle Scholar
  25. 25.
    T.R. Marrero, E.A. Mason, J. Phys. Chem. Ref. Data 1, 3 (1972).  https://doi.org/10.1063/1.3253094 ADSCrossRefGoogle Scholar
  26. 26.
    W.E. Stewart, S. Gotoh, J.P. Sørensen, Ind. Eng. Chem. Fund. 12, 114 (1973).  https://doi.org/10.1021/i160045a019 CrossRefGoogle Scholar
  27. 27.
    S. Gotoh, M. Manner, J.P. Sørensen, W.E. Stewart, Ind. Eng. Chem. Fundam. 12, 119 (1973).  https://doi.org/10.1021/i160045a020 CrossRefGoogle Scholar
  28. 28.
    C.A. Boyd, N. Stein, V. Steingrimsson, W.F. Rumpel, J. Chem. Phys. 19, 548 (1951).  https://doi.org/10.1063/1.1748290 ADSCrossRefGoogle Scholar
  29. 29.
    J. Baranski, Bestimmung binärer diffusionskoeffizienten von gasen mit einer loschmidt-zelle und holografischer interferometrie. Dissertation, Universität Rostock, Rostock (2002)Google Scholar
  30. 30.
    T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 34, 47 (2013).  https://doi.org/10.1007/s10765-012-1352-4 ADSCrossRefGoogle Scholar
  31. 31.
    D. Buttig, Bestimmung binärer diffusionskoeffizienten in gasmischungen mit einer loschmidt-zelle und holografischer interferometrie. Dissertation, Universitẗ Rostock (2010)Google Scholar
  32. 32.
    K. Kerl, Über die untersuchung der diffusion binärer gasgemische. Dissertation, Techn. Univ., Braunschweig (1968)Google Scholar
  33. 33.
    T. Kugler, Determination of gaseous binary diffusion coefficients using a Loschmidt cell combined with holographic interferometry. Dissertation, Universität Erlangen-Nürnberg (2015)Google Scholar
  34. 34.
    T. Kugler, B. Jäger, E. Bich, M.H. Rausch, A.P. Fröba, Int. J. Thermophys. 36, 3116 (2015).  https://doi.org/10.1007/s10765-015-1966-4 ADSCrossRefGoogle Scholar
  35. 35.
    L. Wolff, P. Zangi, T. Brands, M.H. Rausch, H.-J. Koß, A.P. Fröba, A. Bardow, Int. J. Thermophys. (2018).  https://doi.org/10.1007/s10765-018-2451-7
  36. 36.
    D. Buttig, E. Vogel, E. Bich, E. Hassel, Meas. Sci. Technol. 22, 105409 (2011).  https://doi.org/10.1088/0957-0233/22/10/105409 ADSCrossRefGoogle Scholar
  37. 37.
    D.R. MacQuigg, Appl. Opt. 16, 291 (1977).  https://doi.org/10.1364/AO.16.000291 ADSCrossRefGoogle Scholar
  38. 38.
    D.B. Neumann, H.W. Rose, Appl. Opt. 6, 1097 (1967).  https://doi.org/10.1364/AO.6.001097 ADSCrossRefGoogle Scholar
  39. 39.
    J. Crank, The Mathematics of Diffusion (Clarendon Press, Oxford, 1975)zbMATHGoogle Scholar
  40. 40.
    H.J. Achtermann, J.G. Hong, G. Magnus, R.A. Aziz, M.J. Slaman, J. Chem. Phys. 98, 2308 (1993).  https://doi.org/10.1063/1.464212 ADSCrossRefGoogle Scholar
  41. 41.
    H. Fujita, J. Phys. Soc. Jpn. 11, 1018 (1956).  https://doi.org/10.1143/JPSJ.11.1018 ADSCrossRefGoogle Scholar
  42. 42.
    M. Kullnick, Interferometrische untersuchung der diffusion in binären gemischen realer gase mit einer loschmidt-diffusionsapparatur. Dissertation, Technical University of Braunschweig (2001)Google Scholar
  43. 43.
    Y. Bard, Nonlinear Parameter Estimation (Academic Press, New York, 1973)zbMATHGoogle Scholar
  44. 44.
    P.J. Carson, P.J. Dunlop, Chem. Phys. Lett. 14, 377 (1972).  https://doi.org/10.1016/0009-2614(72)80137-4 ADSCrossRefGoogle Scholar
  45. 45.
    B.N. Srivastava, R. Paul, Physica 28, 646 (1962).  https://doi.org/10.1016/0031-8914(62)90120-9 ADSCrossRefGoogle Scholar
  46. 46.
    J. Kestin, K. Knierim, E.A. Mason, B. Najafi, S.T. Ro, M. Waldman, J. Phys. Chem. Ref. Data 13, 229 (1984).  https://doi.org/10.1063/1.555703 ADSCrossRefGoogle Scholar
  47. 47.
  48. 48.
    G.R. Staker, P.J. Dunlop, Chem. Phys. Lett. 42, 419 (1976).  https://doi.org/10.1016/0009-2614(76)80643-4 ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Technical ThermodynamicsRWTH Aachen UniversityAachenGermany
  2. 2.Institute of Advanced Optical Technologies - Thermophysical Properties (AOT-TP)Friedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations