Advertisement

Phonon Transport of Zigzag/Armchair Graphene Superlattice Nanoribbons

  • Jianjun Liu
  • Yang Liu
  • Yuhang Jing
  • Yufei Gao
  • Junqing Zhao
  • Bin Ouyang
Article

Abstract

Nanostructured thermoelectric materials are promising for modulating physical properties to achieve high thermoelectric performance. In this paper, thermal transport properties of armchair/zigzag graphene superlattice nanoribbons (A/Z graphene SLNRs) are investigated by performing nonequilibrium molecular dynamics simulations. The target of the research is to realize low thermal conductivity by introducing single-vacancy point defects. Our simulations demonstrate that the thermal conductivity of A/Z graphene SLNRs depends nonmonotonically on periodic length. In addition, introducing single-vacancy point defects into the superlattice nanoribbons could decrease the phonon tunneling in superlattice nanoribbons, so that the thermal conductivity could be reduced further. Furthermore, a monotonic dependence of the thermal conductivity of A/Z graphene SLNRs with length of zigzag part in periodic length is discovered. This phenomenon is explained by performing phonon property analysis. Our simulations deliver a detailed phonon transport in A/Z graphene SLNRs and provide useful guidance on how to engineer the thermal transport properties of A/Z graphene SLNRs for applications of nanoribbon-related devices in thermoelectrics.

Keywords

Graphene superlattice nanoribbon Molecular dynamics simulation Phonon transport Single-vacancy point defect 

Notes

Acknowledgements

This research was supported by the NSF of China under Grants Nos. 11304059, 11602149, the NSF of Heilongjiang Province of China under Grants No. QC2015001, and the International Postdoctoral Exchange Fellowship Program No. 20140016.

References

  1. 1.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008)ADSCrossRefGoogle Scholar
  2. 2.
    C.A. Marianetti, H.G. Yevick, Failure Mechanisms of graphene under tension. Phys. Rev. Lett. 105, 245502 (2010)ADSCrossRefGoogle Scholar
  3. 3.
    A.A. Balandin, Thermal properties of graphene and nanostructured carbon materials. Nat. Mater. 10, 569–581 (2011)ADSCrossRefGoogle Scholar
  4. 4.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    J.H. Seol, I. Jo, A.L. Moore, L. Lindsay, Z.H. Aitken, M.T. Pettes, X. Li, Z. Yao, R. Huang, D. Broido, N. Mingo, R.S. Ruoff, L. Shi, Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010)ADSCrossRefGoogle Scholar
  6. 6.
    K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  7. 7.
    A.H. Castro Neto, F. Guinea, N.M.R. Peres, K.S. Novoselov, A.K. Geim, The electronic properties of graphene. Rev. Model. Phys. 81, 109 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    R. Balog, B. Jorgensen, L. Nilsson, M. Andersen, E. Rienks, M. Bianchi, M. Fanetti, E. Lagsgaard, A. Baraldi, S. Lizzit, Z. Sljivancanin, F. Besenbacher, B. Hammer, T.G. Pedersen, P. Hofmann, L. Hornekar, Bandgap opening in graphene induced by patterned hydrogen adsorption. Nat. Mater. 9, 315–319 (2010)ADSCrossRefGoogle Scholar
  9. 9.
    C. Soldano, A. Mahmood, E. Dujardin, Production, properties and potential of graphene. Carbon 48, 2127–2150 (2010)CrossRefGoogle Scholar
  10. 10.
    J.S. Wu, W. Pisula, K. Mullen, Graphenes as potential material for electronics. Chem. Rev. 107, 718–747 (2007)CrossRefGoogle Scholar
  11. 11.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E.P. Pokatilov, D.L. Nika, A.A. Balandin, W.Z. Bao, F. Miao, C.N. Lau, Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008)ADSCrossRefGoogle Scholar
  12. 12.
    F. Hao, D.N. Fang, Z.P. Xu, Mechanical and thermal transport properties of graphene with defects. Appl. Phys. Lett. 99, 041901 (2011)ADSCrossRefGoogle Scholar
  13. 13.
    J.E. Rossi, C.D. Cress, S.M. Goodman, N.D. Cox, I. Puchades, A.R. Bucossi, A. Merrill, B.J. Landi, Enhanced electrical transport in carbon nanotube thin films through defect modulation. J. Phys. Chem. C 120, 15488–15495 (2016)CrossRefGoogle Scholar
  14. 14.
    Y.F. Gao, Y. Jing, J. Liu, X. Li, Q. Meng, Tunable thermal transport properties of graphene by sing-vacancy point defect. Appl. Therm. Eng. 113, 1419–1425 (2017)CrossRefGoogle Scholar
  15. 15.
    Y.F. Gao, X.L. Zhang, Y.G. Zhou, M. Hu, Giant reduction in thermal conductivity of extended Type-I silicon clathrates and prominent thermal effect of 6d guest wyckoff positions. J. Mater. Chem. C 5, 10578–10588 (2017)CrossRefGoogle Scholar
  16. 16.
    H. Eslami, L. Mohammadzadeh, N. Mehdipour, Reverse nonequilibrium molecular dynamics simulation of thermal conductivity in nanoconfined polyamide-6,6. J. Chem. Phys. 135, 064703 (2011)ADSCrossRefGoogle Scholar
  17. 17.
    H. Eslami, L. Mohammadzadeh, N. Mehdipour, Anisotropic heat transport in nanoconfined polyamide-6,6 oligomers: atomistic reverse nonequilibrium molecular dynamics simulation. J. Chem. Phys. 136, 104901 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    L.J. Lauhon, M.S. Gudiksen, C.L. Wang, C.M. Lieber, Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 420, 57–61 (2002)ADSCrossRefGoogle Scholar
  19. 19.
    M. Hu, K.P. Giapis, J.V. Goicochea, X. Zhang, D. Poulikakos, Significant reduction of thermal conductivity in Si/Ge core-shell nanowires. Nano Lett. 11, 618–623 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Hu, X. Zhang, K.P. Giapis, D. Poulikakos, Thermal conductivity reduction in core-shell nanowires. Phys. Rev. B 84, 085442 (2011)ADSCrossRefGoogle Scholar
  21. 21.
    D. Li, Y. Wu, R. Fan, P. Yang, A. Majumdar, Thermal conductivity of Si/SiGe superlattice nanowires. Appl. Phys. Lett. 83, 3186–3188 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    C.K. Liu, C.K. Yu, H.C. Chien, S.L. Kuo, C.Y. Hsu, M.J. Dai, G.L. Luo, S.C. Huang, M.J. Huang, Thermal conductivity of Si/SiGe superlattice films. J. Appl. Phys. 104, 144301 (2008)Google Scholar
  23. 23.
    M. Hu, D. Poulikakos, Si/Ge superlattice nanowires with ultralow thermal conductivity. Nano Lett. 12, 5487–5494 (2012)ADSCrossRefGoogle Scholar
  24. 24.
    G. Wu, Q. Meng, Y. Jing, Computational design for interconnection of graphene nanoribbons. Chem. Phys. Lett. 531, 119–125 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002)ADSCrossRefGoogle Scholar
  26. 26.
    L. Lindsay, D.A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene. Phys. Rev. B 81, 205441 (2010)ADSCrossRefGoogle Scholar
  27. 27.
    S. Plimpton, Fast parallel algorithms for short-range molecular dynamics. J. Comp. Phys. 117, 1–19 (1995)ADSCrossRefGoogle Scholar
  28. 28.
    W.G. Hoover, Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695 (1985)ADSCrossRefGoogle Scholar
  29. 29.
    F.J. Muller-Plathe, A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J. Chem. Phys. 106, 6082 (1997)ADSCrossRefGoogle Scholar
  30. 30.
    R. Venkatasubramanian, Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures. Phys. Rev. B 61, 3091–3097 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    M.V. Simkin, G.D. Mahan, Minimum thermal conductivity of superlattices. Phys. Rev. Lett. 84, 927–930 (2000)ADSCrossRefGoogle Scholar
  32. 32.
    Y.F. Gao, W.B. Bao, Q.Y. Meng, Y. Jing, X.X. Song, The thermal transport properties of single-crystalline nanowires covered with amorphous shell: a molecular dynamics study. J. Non-Cryst. Solids 387, 132–138 (2014)ADSCrossRefGoogle Scholar
  33. 33.
    X.L. Zhang, Y.F. Gao, Y.L. Chen, M. Hu, Robustly engineering thermal conductivity of bilayer graphene by interlayer bonding. Sci. Rep. 6, 22011 (2016)ADSCrossRefGoogle Scholar
  34. 34.
    Y. Wang, C. Liebig, X. Xu, R. Venkatasubramanian, Appl. Phys. Lett. 97, 083103 (2010)ADSCrossRefGoogle Scholar
  35. 35.
    P.G. Murphy, J.E. Moore, Phys. Rev. B 76, 155313 (2007)ADSCrossRefGoogle Scholar
  36. 36.
    X. Zhang, M. Hu, D. Tang, Thermal rectification at silicon/horizontally aligned carbon nanotube interfaces. J. Appl. Phys. 113, 194307 (2013)ADSCrossRefGoogle Scholar
  37. 37.
    M. Hu, Y. Jing, X. Zhang, Low thermal conductivity of graphyne nanotubes from molecular dynamics study. Phys. Rev. B 91, 155408 (2015)ADSCrossRefGoogle Scholar
  38. 38.
    Y. Jing, M. Hu, Y. Gao, L. Guo, Y. Sun, On the origin of abnormal phonon transport of graphyne. Int. J. Heat Mass Tran. 85, 880–889 (2015)CrossRefGoogle Scholar
  39. 39.
    Y. Jing, M. Hu, L. Guo, Thermal conductivity of hybrid graphene/silicon heterostructures. J. Appl. Phys. 114, 153518 (2013)ADSCrossRefGoogle Scholar
  40. 40.
    M. Hu, X. Zhang, D. Poulikakos, Anomalous thermal response of silicene to uniaxial stretching. Phys. Rev. B 87, 195417 (2013)ADSCrossRefGoogle Scholar
  41. 41.
    L. Lindsay, D.A. Broido, N. Mingo, Flexural phonons and thermal transport in graphene. Phys. Rev. B 82, 115427 (2010)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Jiangsu Electric Power Company Research InstituteNanjingPeople’s Republic of China
  2. 2.Department of Astronautical Science and MechanicsHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.School of Architecture and Civil EngineeringShenyang University of TechnologyShenyangPeople’s Republic of China
  4. 4.Department of Materials Science and EngineeringUniversity of California BerkeleyBerkeleyUSA
  5. 5.Beckman Institute for Advanced Science and Technology, National Center for Supercomputing ApplicationsUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations