Advertisement

Polymer Nanofibers Incorporated with Silver Nanoparticles: Thermal Properties

  • W. Melgares Camacho
  • E. San Martín Martinez
  • A. Cruz-Orea
  • M. A. Aguilar Frutis
ICPPP 19
  • 62 Downloads
Part of the following topical collections:
  1. ICPPP-19: Selected Papers of the 19th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

In this study, photothermal techniques were used to investigate the thermal diffusivity, effusivity, and conductivity of samples based on polyvinylidene difluoride (PVDF) polymeric nanofibers incorporated with silver nanoparticles (Ag-NPs). Different amounts were investigated to analyze the thermal effect of Ag-NPs on the polymeric matrix. The Ag-NPs were synthesized by sol–gel and microwave-assisted methods, which have advantages over conventional synthesis methods. The composite of PVDF nanofibers and Ag-NPs was obtained by electrospinning technique while varying the processing parameters. The UV–Vis characteristic spectrum of the nanoparticles was obtained. The hydrodynamic radius of the Ag-NPs was about 16 nm, which was determined by a nanozetasizer. A ζ potential of about 0.03 mV was also measured in this system. This parameter is a measure of the magnitude of the repulsion or electrical attraction between particles and is one of the main measurements to determine the stability of nanoparticles. The morphologies were observed by scanning electron microscopy and showed cylindrical fibers with diameters ranging from 159 nm to 658 nm. Transmission electron microscopy was used to observe the incorporation and distribution of Ag-NPs in the PVDF nanofibers. The thermal effects of Ag-NPs on the polymeric matrix were determined from the thermal properties. The thermal conductivity increased from 0.12 W·m−1·K−1 to 0.34 W·m−1·K−1 when the Ag-NP amount was increased from 4 % to 12 % in the polymeric matrix.

Keywords

Composites Electrospinning Nanofibers Polyvinylidene difluoride Silver nanoparticles 

Notes

Acknowledgements

W. Melgares Camacho is thankful for the scholarship program granted by the National Council of Sciences and Technology (CONACYT) and the Institutional Support for Research Incentive Grant (BEIFI). The authors are also thankful for the partial financial support from CONACYT through Project No. 241330. We also thank Ing. Esther Ayala from the Physics Department, CINVESTAV-IPN, for her technical support to develop the experiments.

References

  1. 1.
    A. Dodabalapur, Mater. Today 9, 24 (2006)CrossRefGoogle Scholar
  2. 2.
    H.S. Nalwa, Handbook of Advanced Electronic and Photonic Materials and Devices: Semiconductors, vol. 1 (Academic Press, London, 2001)Google Scholar
  3. 3.
    R. Gangopadhyay, A. De, Chem. Mater. 12, 608 (2000)CrossRefGoogle Scholar
  4. 4.
    P.M. Ajayan, L.S. Schadler, C. Giannaris, A. Rubio, Adv. Mater. 12, 750 (2000)CrossRefGoogle Scholar
  5. 5.
    A. Pantano, G. Modica, F. Cappello, Mater. Sci. Eng. A 486, 222 (2008)CrossRefGoogle Scholar
  6. 6.
    K. Sanada, Y. Tada, Y. Shindo, Compos. Part A Appl. Sci. Manuf. 40, 724 (2009)CrossRefGoogle Scholar
  7. 7.
    R. Jacob, A.P. Jacob, D.E. Mainwaring, J. Mol. Struct. 933, 77 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    M. Vinoba, S.-K. Jeong, M. Bhagiyalakshmi, M. Alagar, Bull. Korean Chem. Soc. 31, 3668 (2010)CrossRefGoogle Scholar
  9. 9.
    W.-T. Liu, J. Biosci. Bioeng. 102, 1 (2006)CrossRefGoogle Scholar
  10. 10.
    I. Fratoddi, R. Matassa, L. Fontana, I. Venditti, G. Familiari, C. Battocchio, E. Magnano, S. Nappini, G. Leahu, A. Belardini, J. Phys. Chem. C 121, 18110 (2017)CrossRefGoogle Scholar
  11. 11.
    A. Pal, S. Shah, S. Devi, Mater. Chem. Phys. 114, 530 (2009)CrossRefGoogle Scholar
  12. 12.
    Y. Gao, P. Jiang, L. Song, J. Wang, L. Liu, D. Liu, Y. Xiang, Z. Zhang, X. Zhao, X. Dou, J. Cryst. Growth 289, 376 (2006)ADSCrossRefGoogle Scholar
  13. 13.
    M. Tsuji, M. Hashimoto, Y. Nishizawa, M. Kubokawa, T. Tsuji, Chem. Eur. J. 11, 440 (2005)CrossRefGoogle Scholar
  14. 14.
    I. Pastoriza-Santos, L.M. Liz-Marzán, Langmuir 18, 2888 (2002)CrossRefGoogle Scholar
  15. 15.
    W. Sigmund, J. Yuh, H. Park, V. Maneeratana, G. Pyrgiotakis, A. Daga, J. Taylor, J.C. Nino, J. Am. Ceram. Soc. 89, 395 (2006)CrossRefGoogle Scholar
  16. 16.
    H.S. Nalwa, Ferroelectric Polymers: Chemistry: Physics, and Applications (CRC Press, Boca Raton, 1995)CrossRefGoogle Scholar
  17. 17.
    F. Xia, Y. Wang, H. Li, C. Huang, Y. Ma, Q. Zhang, Z.Y. Cheng, F.B. Bateman, J. Polym. Sci. Part B Polym. Phys. 41, 797 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    S.B. Lang, S. Muensit, in Materials Research Society Symposium Proceedings (Materials Research Society, Warrendale; 1999, 2006), p. 3Google Scholar
  19. 19.
    A. Shirinov, W. Schomburg, Sens. Actuators A 142, 48 (2008)CrossRefGoogle Scholar
  20. 20.
    K.J. Kim, S. Tadokoro, Artificial Muscles and Sensors (Springer, London, 2007)CrossRefGoogle Scholar
  21. 21.
    M.A. Qasaimeh, S. Sokhanvar, J. Dargahi, M. Kahrizi, J. Microelectronchen. Syst. 18, 195 (2009)CrossRefGoogle Scholar
  22. 22.
    M. Tanaka, Y. Tanaka, S. Chonan, J. Intell. Mater. Syst. Struct. 19, 35 (2008)CrossRefGoogle Scholar
  23. 23.
    Y.M. Chang, J.S. Lee, K.J. Kim, Solid State Phenom. (2007).  https://doi.org/10.4028/www.scientific.net/SSP.124-126.299 CrossRefGoogle Scholar
  24. 24.
    A. Rosencwaig, A. Gersho, J. Appl. Phys. 47, 64 (1976)ADSCrossRefGoogle Scholar
  25. 25.
    M. Marquezini, N. Cella, A. Mansanares, H. Vargas, L. Miranda, Meas. Sci. Technol. 2, 396 (1991)ADSCrossRefGoogle Scholar
  26. 26.
    D. Dadarlat, J. Gibkes, D. Bicanic, A. Pasca, J. Food Eng. 30, 155 (1996)CrossRefGoogle Scholar
  27. 27.
    S. Tomás, A. Cruz-Orea, S. Stolik, R. Pedroza-Islas, D. Villagómez-Zavala, C. Gómez-Corona, Int. J. Thermophys. 25, 611 (2004)ADSCrossRefGoogle Scholar
  28. 28.
    N.G. Astrath, F.B. Astrath, J. Shen, C. Lei, J. Zhou, Z. Sheng Liu, T. Navessin, M.L. Baesso, A.C. Bento, J. Appl. Phys. 107, 043514 (2010)ADSCrossRefGoogle Scholar
  29. 29.
    R.L. Voti, G. Leahu, M. Larciprete, C. Sibilia, M. Bertolotti, I. Nefedov, I. Anoshkin, Int. J. Thermophys. 36, 1342 (2015)ADSCrossRefGoogle Scholar
  30. 30.
    M.A. Aguilar-Mendez, E. San Martin-Martinez, J.E. Morales, A. Cruz-Orea, M.R. Jaime-Fonseca, Anal. Sci. 23, 457 (2007)CrossRefGoogle Scholar
  31. 31.
    T. Tominaga, K. Ito, Jpn. J. Appl. Phys. 27, 2392 (1988)ADSCrossRefGoogle Scholar
  32. 32.
    U. Zammit, S. Paoloni, F. Mercuri, M. Marinelli, F. Scudieri, AIP Adv. 2, 012135 (2012)ADSCrossRefGoogle Scholar
  33. 33.
    U. Zammit, F. Mercuri, S. Paoloni, M. Marinelli, R. Pizzoferrato, J. Appl. Phys. 117, 105104 (2015)ADSCrossRefGoogle Scholar
  34. 34.
    L.M. Cervantes-Espinosa, F.D.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, J. Mendoza-Alvarez, J. Valcárcel, A. García-Quiroz, Int. J. Thermophys. 33, 1916 (2012)ADSCrossRefGoogle Scholar
  35. 35.
    L. Ortega-Arroyo, E.S. Martin-Martinez, M.A. Aguilar-Mendez, A. Cruz-Orea, I. Hernandez-Pérez, C. Glorieux, Starch-Stärke 65, 814 (2013)CrossRefGoogle Scholar
  36. 36.
    A. Boudenne, L. Ibos, E. Gehin, Y. Candau, J. Phys. D Appl. Phys. 37, 132 (2003)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto Politécnico Nacional - Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada delCiudad de MéxicoMéxico
  2. 2.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del IPNCiudad de MéxicoMéxico

Personalised recommendations