Can the Temperature Dependence of the Heat Transfer Coefficient of the Wire–Nanofluid Interface Explain the “Anomalous” Thermal Conductivity of Nanofluids Measured by the Hot-Wire Method?

  • D. P. H. HasselmanEmail author


It is suggested that a possible explanation for the “anomalous” thermal conductivity of nanofluids measured by the hot-wire method is the positive temperature dependence of the heat transfer coefficient of the hot-wire–nanofluid interface, which results from the positive temperature dependence of the energy exchanged during the particles’ collisions with the wire. It is shown qualitatively that this effect can result in an overestimate of the nanofluid’s thermal conductivity. It is concluded that the interpretation of the experimental data for the thermal conductivity of nanofluids, obtained by the hot-wire method, requires independently determined data for the heat transfer coefficients and their temperature dependence of the hot-wire nanofluid and the particle–fluid interfaces.


Interfacial heat transfer coefficient Nanofluid Thermal conductivity Transient hot-wire method 



The Department of Mechanical Engineering at the University of British Columbia, Vancouver, Canada, is gratefully acknowledged for providing me, as Visiting Professor, with the desk space and computer needed to conduct this study. I am indebted to Dr. J. R. Thomas, Jr., Professor Emeritus, Department of Mechanical Engineering, Virginia Polytechnic Institute, Blacksburg, Virginia, for deriving the equations required for determining the thermal conductance of the hot-wire–fluid interface. The editorial assistance provided by Mrs. K. Donaldson is much appreciated.


  1. 1.
    J.A. Eastman, S.U.S. Choi, S. Li, W. Yu, L.J. Thompson, Appl. Phys. Lett. 78, 718 (2001)ADSCrossRefGoogle Scholar
  2. 2.
    S.U.S. Choi, Z.G. Zhang, W. Yu, F.R. Lockwood, E.A. Grulke, Appl. Phys. Lett. 79, 2252 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    K. Das, S.U.S. Choi, H.E. Patel, Heat Transf. Eng. 27, 3 (2006)ADSCrossRefGoogle Scholar
  4. 4.
    X.-Q. Wang, A.S. Mujumdar, Int. J. Therm. Sci. 46, 1 (2007)CrossRefGoogle Scholar
  5. 5.
    G. Puliti, S. Paolucci, M. San, Appl. Mech. Rev. 64, 030803-1 (2011)Google Scholar
  6. 6.
    R. Saidur, K.Y. Leong, H.A. Mohammad, Renew. Sustain. Energy Rev. 15, 1646 (2011)CrossRefGoogle Scholar
  7. 7.
    R. Sankar, R. Nageswaram, R.C. Srinivasa, Int. J. Adv. Technol. 13, 13 (2012)Google Scholar
  8. 8.
    G. Tertsinidou, M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 36, 1367 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    S. Akilu, K.V. Sharma, A.T. Baheta, R. Mamat, Renew. Sustain. Energy Rev. 66, 654 (2016)CrossRefGoogle Scholar
  10. 10.
    J.C. Maxwell, A Treatise on Electricity and Magnetism, 2nd edn. (Clarendon Press, Oxford, 1881)zbMATHGoogle Scholar
  11. 11.
    R.L. Hamilton, O.K. Crosser, I E C Fundam. 1, 187 (1962)CrossRefGoogle Scholar
  12. 12.
    G. Tertsinidou, C.M. Tsolakidou, M. Pantzali, M. Assael, L. Colla, L. Fedele, S. Bobbo, W.A. Wakeham, J. Chem. Eng. Data 62, 5491 (2017)CrossRefGoogle Scholar
  13. 13.
    G. Tertsinidou et al., in Presented at the 2017 European Thermophysical Properties Conference [in press]Google Scholar
  14. 14.
    L.H. Van Flack, Elements of Mater. Sci. and Eng., 6th edn. (Addison-Wesley, Boston, MA, 1989)Google Scholar
  15. 15.
    W.D. Kingery, J. Francl, R.L. Coble, T. Vasilos, J. Am. Ceram. Soc. 37, 107 (1954)CrossRefGoogle Scholar
  16. 16.
    S. Maruyama, T. Kimura, Therm. Sci. Eng. 7, 63 (1999)Google Scholar
  17. 17.
    G. Balasubramanian, S. Banerjee, I.K. Puri, J. Appl. Phys. 104, 064 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Torii, T. Ohara, K. Ishida, J. Heat Transf. 132, 012402 (2010)CrossRefGoogle Scholar
  19. 19.
    Y. Wang, P. Keblinski, Appl. Phys. Lett. 99, 073112 (2011)ADSCrossRefGoogle Scholar
  20. 20.
    M. Han, J. Mech. Sci. Technol. 25, 37 (2011)CrossRefGoogle Scholar
  21. 21.
    H. Harikrishna, W.A. Ducker, S.T. Huxtable, Appl. Phys. Lett. 102, 251606 (2013)ADSCrossRefGoogle Scholar
  22. 22.
    Y. Chen, C. Zhang, Int. J. Heat Mass Transf. 78, 624 (2014)CrossRefGoogle Scholar
  23. 23.
    M.E. Caplan, A. Giri, P.E. Hopkins, J. Chem. Phys. 140, 154701-1-7 (2014)ADSCrossRefGoogle Scholar
  24. 24.
    M. Seddiq, M. Maerefat, M. Mirzaei, Int. J. Therm. Sci. 75, 28 (2014)CrossRefGoogle Scholar
  25. 25.
    J.F. Thekkethala, S.P. Sathian, Microfluid. Nanofluid. 18, 637 (2015)CrossRefGoogle Scholar
  26. 26.
    Z. Tian, A. Marconnet, G. Chen, Appl. Phys. Lett. 106, 211602 (2015)ADSCrossRefGoogle Scholar
  27. 27.
    O.M. Wilson, X.Y. Hu, D.G. Cahill, P.V. Braun, Phys. Rev. 66, 224301-1 (2002)CrossRefGoogle Scholar
  28. 28.
    S. Shenogin, L. Xue, R. Ozisik, P. Keblinski, D.J. Cahill, J. Appl. Phys. 95, 8136 (2004)ADSCrossRefGoogle Scholar
  29. 29.
    E.V. Timofeeva, A.N. Gravilov, J.M. McCloskey, Y.V. Tolmachev, S. Sprunt, Phys. Rev. E 76E, 061203, 1 (2007)ADSGoogle Scholar
  30. 30.
    S.A. Novopashin, M.A. Serebryakova, G.I. Sukhinin, J. Exp. Theor. Phys. Lett. 102, 518 (2015)CrossRefGoogle Scholar
  31. 31.
    Y. Benveniste, T. Miloh, Int. J. Eng. Sci. 24, 153 (1986)CrossRefGoogle Scholar
  32. 32.
    D.P.H. Hasselman, L.F. Johnson, J. Compos. Mater. 21, 508 (1987)ADSCrossRefGoogle Scholar
  33. 33.
    Y. Benveniste, J. Appl. Phys. 61, 2840 (1987)ADSCrossRefGoogle Scholar
  34. 34.
    Y.C. Chiew, E.D. Glandt, Chem. Eng. Sci. 42, 2677 (1987)CrossRefGoogle Scholar
  35. 35.
    C.-W. Nan, R. Barringer, D.R. Clarke, H. Gleiter, J. Appl. Phys. 81, 6692 (1997)ADSCrossRefGoogle Scholar
  36. 36.
    M.L. Huber, R.A. Perkins, D.G. Friend, J.V. Sengers, M.J. Assael, I.N. Metaxa, K. Miyagawa, R. Hellman, E. Vogel, J. Phys. Chem. Ref. Data 41, 033102 (2012)ADSCrossRefGoogle Scholar
  37. 37.
    Data provided by Superior Technical Ceramics, Albany, Vermont, USAGoogle Scholar
  38. 38.
    A.L. Geiger, D.P.H. Hasselman, K.Y. Donaldson, J. Mater. Sci. Lett. 12, 420 (1993)CrossRefGoogle Scholar
  39. 39.
    A.G. Every, Y. Tzou, D.P.H. Hasselman, R. Raj, Acta Metall. Mater. 40, 129 (1992)CrossRefGoogle Scholar
  40. 40.
    D.P.H. Hasselman, K.Y. Donaldson, J. Liu, L.J. Gauckler, P.D. Ownby, J. Am. Ceram. Soc. 77, 1757 (1994)CrossRefGoogle Scholar
  41. 41.
    X. Wang, X. Xu, S.U.S. Choi, J. Thermophys. Heat Transf. 13, 474 (1999)CrossRefGoogle Scholar
  42. 42.
    H.Q. Xie, J.C. Wang, T.G. Xi, Y. Liu, Q.R. Wu, J. Appl. Phys. 91, 4568 (2002)ADSCrossRefGoogle Scholar
  43. 43.
    C.H. Chon, K.D. Kihm, S.P. Lee, S.U.S. Choi, Appl. Phys. Lett. 87, 153107 (2005)ADSCrossRefGoogle Scholar
  44. 44.
    C.H. Li, G.P. Peterson, J. Appl. Phys. 101, 044312 (2007)ADSCrossRefGoogle Scholar
  45. 45.
    L. Xue, P. Keblinski, S.R. Philpot, S.U.-S. Choi, J.A. Eastman, J. Chem. Phys. 118, 337 (2003)ADSCrossRefGoogle Scholar
  46. 46.
    C.A. Nieto de Castro, S.F.Y. Li, A. Nagashima, R.D. Tengove, W.A. Wakeham, J. Phys. Chem. Ref. Data 15, 1074 (1986)ADSCrossRefGoogle Scholar
  47. 47.
    M.L.V. Ramires, C.A. Nieto de Castro, Y. Nagasaka, A. Nagashima, M.J. Assael, W.A. Wakeham, J. Phys. Ref. Data 24, 1377 (1995)ADSCrossRefGoogle Scholar
  48. 48.
    H.E. Patel, S.K. Das, T. Sundararajan, A. Sreekumaran, B. George, T. Pradeep, Appl. Phys. Lett. 85, 2931 (2003)ADSCrossRefGoogle Scholar
  49. 49.
    S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Trans. ASME J. Heat Transf. 125, 567 (2003)CrossRefGoogle Scholar
  50. 50.
    C. Li, G.P. Peterson, J. Appl. Phys. 99, 084314 (2006)ADSCrossRefGoogle Scholar
  51. 51.
    H.A. Mintsa, G. Roy, C.T. Nguyen, D. Doucet, Int. J. Therm. Sci. 48, 363 (2009)CrossRefGoogle Scholar
  52. 52.
    H. Xie, W. Yu, Y. Li, L. Chen, Nanoscale Res. Lett. 6, 124 (2011)ADSCrossRefGoogle Scholar
  53. 53.
    R. Agarwal, K. Verma, N.K. Agrawal, R. Singh, Exp. Therm. Fluid Sci. 80, 19 (2017)CrossRefGoogle Scholar
  54. 54.
    M.M. Ghosh, S. Roy, S.K. Pabi, S. Ghosh, J. Nanosci. Nanotechnol. 11, 2196 (2011)CrossRefGoogle Scholar
  55. 55.
    M.M. Ghosh, S. Ghosh, S.K. Pabi, Int. J. Modern Eng. Res. 1, 400 (2011)Google Scholar
  56. 56.
    V. Karthik, S. Sahoo, S.K. Pabi, S. Ghosh, Int. J. Therm. Sci. 64, 53 (2013)CrossRefGoogle Scholar
  57. 57.
    M.M. Ghosh, S. Ghosh, S.K. Pabi, J. Mater. Eng. Perform. 22, 1525 (2013)CrossRefGoogle Scholar
  58. 58.
    R. Tarybakhsh, A.A.L. Neyestanak, H. Tarybakhsh, Adv. Mater. Sci. Eng. Article ID 651365 (2013)Google Scholar
  59. 59.
    J.J. Healy, J.J. de Groot, J. Kestin, Physica 82C, 392 (1976)Google Scholar
  60. 60.
    C.A. Nieto de Castro, B. Taxis, H.M. Roder, W.A. Wakeham, Int. J. Thermophys. 9, 293 (1988)ADSCrossRefGoogle Scholar
  61. 61.
    M.J. Assael, L. Karagiannidis, N. Malamataris, W.A. Wakeham, Int. J. Thermophys. 19, 379 (1998)CrossRefGoogle Scholar
  62. 62.
    P. Keblinski, R. Prasher, J. Eapan, J. Nanoparticle Res. 10, 1089 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of British ColumbiaVancouverCanada
  2. 2.Departments of Materials Science and Engineering and Engineering Science and MechanicsVirginia Polytechnic InstituteBlacksburgUSA

Personalised recommendations