Advertisement

Interaction of Glycylglycine with Cationic Surfactants—Cetylpyridinium Chloride and Cetylpyridinium Bromide: A Volumetric, Ultrasonic and Conductometric Study

  • Anwar Ali
  • Nizamul Haque Ansari
  • Ummer Farooq
  • Shadma Tasneem
  • Shahjahan
  • Firdosa Nabi
Article

Abstract

The interactions of glycylglycine (di-peptide of glycine) also known as 2-[(2-aminoacetyl)amino] acetic acid with cationic surfactants cetylpyridinium chloride (CPC) and cetylpyridinium bromide (CPB) as a function of temperature in aqueous medium has been studied by well-know permutation of volumetric, ultrasonic and conductometric techniques. These measurements have been used to evaluate some useful thermodynamic parameters viz. apparent molar volumes, \( \phi_{v} \), partial molar volumes, \( \phi_{v}^{o} \), transfer volumes, \( \phi_{\text{v}}^{0} (tr) \), partial molar expansibility, \( \phi_{E}^{0} \), hydration number, nH, apparent molal compressibility, \( \phi_{K} \), limiting partial molal adiabatic compressibility, \( \phi_{K}^{0} \). The specific conductivity (κ) was used to calculate the critical micellar concentration (cmc) and other physicochemical parameters of micellization of CPC/CPB with glycylglycine. The critical micelle concentration, cmc and limiting molar conductivity, \( \varLambda_{m}^{o} \) of the two surfactant systems were determined by using the conductivity data at 298.15 K, 303.15 K, 308.15 K and 313.15 K. The acquired data have been discussed as per various interactions taking place in the ternary system of CPC/CPB, glycylglycine and water.

Keywords

Density Intermolecular interactions Partial molar volumes Specific conductivity Ultrasonic velocities 

References

  1. 1.
    D.C. Carter, J.X. Ho, Adv. Protein Chem. 45, 153 (1994)CrossRefGoogle Scholar
  2. 2.
    L. Richert, F. Boulmedais, P. Lavalle, J. Mutterer, E. Ferreux, G. Decher, P. Schaaf, J.C. Voegel, Biomacromolecules 5, 284 (2004)CrossRefGoogle Scholar
  3. 3.
    A. Rao, J. Kim, R.R. Thomas, Langmuir 21, 617 (2005)CrossRefGoogle Scholar
  4. 4.
    K. Kato, S. Sano, Y. Ikada, Colloids Surf. B 4, 221 (1995)CrossRefGoogle Scholar
  5. 5.
    F. Shahidi, P.G. Farrell, J. Chem. Soc., Faraday Trans.1 77, 963 (1981)CrossRefGoogle Scholar
  6. 6.
    A.W. Hakin, A.K. Copeland, J.L. Liu, R.A. Marriott, K.E. Preuss, J. Chem. Eng. Data 42, 84 (1997)CrossRefGoogle Scholar
  7. 7.
    Y. Akhtar, Adv. Mater. Res. 1051, 215 (2014)CrossRefGoogle Scholar
  8. 8.
    C.M. Romero, E. Moreno, J.L. Rojas, Thermochim. Acta 328, 33 (1999)CrossRefGoogle Scholar
  9. 9.
    A. Ali, S. Sabir, A. Nain, S. Hyder, S. Ahmad, M. Tariq, R. Patel, J. Chin. Chem. Soc. 54, 659 (2007)CrossRefGoogle Scholar
  10. 10.
    R. Badarayani, A. Kumar, J. Sol. Chem. 33, 407 (2004)CrossRefGoogle Scholar
  11. 11.
    G. Lin, R. Lin, L. Ma, Thermochim. Acta 430, 31 (2005)CrossRefGoogle Scholar
  12. 12.
    L. Guo, L. Xu, L. Ma, R. Lin, J. Sol. Chem. 38, 383 (2009)CrossRefGoogle Scholar
  13. 13.
    T. Altamash, J. Chem. Eng. Data 54, 3133 (2009)CrossRefGoogle Scholar
  14. 14.
    S.K. Singh, A. Kundu, N. Kishore, J. Chem. Thermodyn. 36, 7 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Pandey, S. Pandey, S. Gupta, A. Shukla, J. Sol. Chem. 23, 1049 (1994)CrossRefGoogle Scholar
  16. 16.
    S. Oswal, M. Maisuria, R. Gardas, J. Mol. Liqs. 108, 199 (2003)CrossRefGoogle Scholar
  17. 17.
    J. Desnoyers, Pure Appl. Chem. 54, 1469 (1982)CrossRefGoogle Scholar
  18. 18.
    G.R. Hedwig, J.F. Reading, T.H. Lilley, J. Chem. Soc., Faraday Trans. 87, 1751 (1991)CrossRefGoogle Scholar
  19. 19.
    K.B. Belibaĝli, E. Ayranci, J. Sol. Chem. 19, 867 (1990)CrossRefGoogle Scholar
  20. 20.
    A. Ali, M. Tariq, R. Patel, F.A. Ittoo, Colloid Polym. Sci. 286, 183 (2008)CrossRefGoogle Scholar
  21. 21.
    A. Ali Shahjahan, N.H. Ansari, Russ. Chem. Bull. Int. 59(10), 1999 (2010)CrossRefGoogle Scholar
  22. 22.
    A. Ali, N.A. Shahjahan, S. Malik, V.Bhushan Uzair, Tenside Surf. Det. 54(1), 52 (2015)Google Scholar
  23. 23.
    A. Ali, V. Bhushan, P. Bidhuri, J. Mol. Liq. 177, 209 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Bhat, J.C. Ahluwalia, J. Phys. Chem. 89, 1099 (1985)CrossRefGoogle Scholar
  25. 25.
    A.W. Hakin, M.M. Duke, S.A. Klassen, R.M. McKay, K.E. Preuss, Can. J. Chem. 72, 362 (1994)CrossRefGoogle Scholar
  26. 26.
    H.S. Frank, M.W. Evans, J. Phys. Chem. 13, 507 (1945)CrossRefGoogle Scholar
  27. 27.
    R.K. Wadi, P. Ramasami, J. Chem. Soc. Faraday Trans. 93, 243–247 (1997)CrossRefGoogle Scholar
  28. 28.
    J.F. Reading, I.D. Watson, G.R. Hedwig, J. Chem. Thermodyn. 22, 159 (1990)CrossRefGoogle Scholar
  29. 29.
    H.-J. Hinz, Thermodynamic data for biochemistry and biotechnology (Springer, New York, 2012)Google Scholar
  30. 30.
    T.V. Chalikian, A.P. Sarvazyan, K.J. Breslauer, J. Phys. Chem. 97, 13017 (1993)CrossRefGoogle Scholar
  31. 31.
    L.G. Hepler, Can. J. Chem. 47, 4613 (1969)CrossRefGoogle Scholar
  32. 32.
    M.J. Iqbal, M.A. Chaudhry, J. Chem. Thermodyn. 41, 221 (2009)CrossRefGoogle Scholar
  33. 33.
    F.J. Millero, A. Lo Surdo, C. Shin, J. Phys. Chem. 82, 784 (1978)CrossRefGoogle Scholar
  34. 34.
    G. Lin, P. Bian, R. Lin, J. Chem. Thermodyn. 38, 144 (2006)CrossRefGoogle Scholar
  35. 35.
    F. Franks, M. Quickenden, D. Reid, B. Watson, Trans. Faraday Soc. 66, 582 (1970)CrossRefGoogle Scholar
  36. 36.
    E. Berlin, M. Pallansch, J. Phys. Chem. 72, 1887–1889 (1968)CrossRefGoogle Scholar
  37. 37.
    M. Santosh, D.K. Bhat, A.S. Bhatt, J. Chem. Thermodyn. 42, 742 (2010)CrossRefGoogle Scholar
  38. 38.
    T.V. Chalikian, A.P. Sarvazyan, K.J. Breslauer, Biophys. Chem. 51, 89 (1994)CrossRefGoogle Scholar
  39. 39.
    J.H. Fendler, E.J. Fendler, Catalysis in Micellar and Macromolecular Systems (Academic Press, New York, 1975)MATHGoogle Scholar
  40. 40.
    A.D. Pethybridge, J.D.R. Talbat, W.A. House, J. Solut. Chem. 35, 381–393 (2006)CrossRefGoogle Scholar
  41. 41.
    M.J. Rosen, Surfactants and Interfacial Phenomena, 3rd edn. (Willey, New York, 2004)CrossRefGoogle Scholar
  42. 42.
    Y. Moroi, Micelles: Theoretical and Applied Aspects (Plenum Press, New York, 1992)CrossRefGoogle Scholar
  43. 43.
    L. Abezgeuz, K. Kuperkar, P.A. Hassan, O. Raman, P. Bahadur, D. Danino, J. Colloid Int. Sci. 342, 83–92 (2010)ADSCrossRefGoogle Scholar
  44. 44.
    S.S. Shah, N.U. Jamroz, Q.M. Sharif, Colloids Surf. A 178, 199 (2001)CrossRefGoogle Scholar
  45. 45.
    R.A. Rabinson, R.H. Stokes, Electrolyte Solutions (Butterworths, London, 1968)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of ChemistryJamia Millia Islamia (Central University)New DelhiIndia
  2. 2.Department of Chemistry, Arni School of Basic SciencesArni UniversityKathgarhIndia
  3. 3.Department of Chemistry, Faculty of Applied Medical SciencesJazan UniversityJazanKingdom of Saudi Arabia
  4. 4.Mahindra Ecole CentraleJeedimetla, HyderbadIndia
  5. 5.Department of Chemistry, Faculty of ScienceUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations