TP Phase Diagram of Nitrogen at High Pressures

Article
  • 49 Downloads

Abstract

By employing a mean field model, calculation of the TP phase diagram of molecular nitrogen is performed at high pressures up to 200 GPa. Experimental data from the literature are used to fit a quadratic function in T and P, describing the phase line equations which have been derived using the mean field model studied here for N2, and the fitted parameters are determined. Our model study gives that the observed TP phase diagram can be described satisfactorily for the first-order transitions between the phases at low as well as high pressures in nitrogen. Some thermodynamic quantities can also be predicted as functions of temperature and pressure from the mean field model studied here and they can be compared with the experimental data.

Keywords

First-order transition Mean field model Nitrogen TP phase diagram 

Notes

Acknowledgements

The authors are grateful to Simge Ates of the Middle East Technical University for the technical assistance of the phase diagram.

References

  1. 1.
    A.F. Goncharov, E. Gregoryanz, Z. Liu, H.K. Mao, R.J. Hemley, Phys. Rev. Lett. 85, 1262 (2000)ADSCrossRefGoogle Scholar
  2. 2.
    A.F. Schuch, R.L. Mills, J. Chem. Phys. 52, 6000 (1970)ADSCrossRefGoogle Scholar
  3. 3.
    R.L. Mills, B. Olinger, D.T. Cromer, J. Chem. Phys. 84, 2837 (1986)ADSCrossRefGoogle Scholar
  4. 4.
    J. Belak, R. Lesar, R.D. Etters, J. Chem. Phys. 92, 5430 (1990)ADSCrossRefGoogle Scholar
  5. 5.
    M.D. McCuskey, L. Hsu, L. Wang, E.E. Haller, Phys. Rev. B 54, 8962 (1996)ADSCrossRefGoogle Scholar
  6. 6.
    A. Mulder, J.P.J. Michels, J.A. Schouten, Phys. Rev. B 57, 7571 (1998)ADSCrossRefGoogle Scholar
  7. 7.
    R. Bini, L. Ulivi, J. Kreutz, H.J. Jodl, J. Chem. Phys. 112, 8522 (2000)ADSCrossRefGoogle Scholar
  8. 8.
    R. Caracas, J. Chem. Phys. 127, 144510 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    M.I.M. Scheerboom, J.A. Schouten, J. Chem. Phys. 105, 2553 (1996)ADSCrossRefGoogle Scholar
  10. 10.
    L. Tassini, F. Gorelli, L. Ulivi, J. Chem. Phys. 122, 074701 (2005)ADSCrossRefGoogle Scholar
  11. 11.
    E. Gregoryanz, A.F. Goncharov, R.J. Hemley, H.K. Mao, M. Somayazulu, G. Shen, Phys. Rev. B 66, 224108 (2002)ADSCrossRefGoogle Scholar
  12. 12.
    H. Yurtseven, A. Aslantas, Int. J. Mod. Phys. B 27, 1350125 (2013)ADSCrossRefGoogle Scholar
  13. 13.
    E. Çetinbaş, H. Yurtseven, High Temp. Mater. Process. 32, 25 (2013)Google Scholar
  14. 14.
    H. Yurtseven, D. Ünlü, J. App. Spectrosc. 82, 700 (2015)CrossRefGoogle Scholar
  15. 15.
    H. Yurtseven, O. Akay, High Temp. Mater. Process. 32, 383 (2013)Google Scholar
  16. 16.
    H. Yurtseven, S. Saritas, Int. J. Mod. Phys. B 27, 1350035 (2013)ADSCrossRefGoogle Scholar
  17. 17.
    H. Yurtseven, M. Kurt, Trends Appl. Spectrosc. 9, 49 (2012)Google Scholar
  18. 18.
    F.D. Medina, W.B. Daniels, J. Chem. Phys. 64, 150 (1976)ADSCrossRefGoogle Scholar
  19. 19.
    R. LeSar, S.A. Ekberg, L.H. Jones, R.L. Mills, L.A. Schwalbe, D. Schiferl, Solid State Commun. 32, 131 (1979)ADSCrossRefGoogle Scholar
  20. 20.
    S. Buchsbaum, R.L. Mills, D. Schiferl, J. Chem. Phys. 88, 2522 (1984)CrossRefGoogle Scholar
  21. 21.
    M. Grimsditch, Phys. Rev. B 32, 514 (1985)ADSCrossRefGoogle Scholar
  22. 22.
    D. Schiferl, S. Buchsbaum, R.L. Mills, J. Phys. Chem. 89, 2324 (1985)CrossRefGoogle Scholar
  23. 23.
    H. Schneider, W. Hȁfner, A. Wokaun, H. Olijnyk, J. Chem. Phys. 96, 8046 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    T. Westerhoff, A. Wittig, R. Feile, Phys. Rev. B 54, 14 (1996)ADSCrossRefGoogle Scholar
  25. 25.
    M. Ross, F. Rogers, Phys. Rev. B 74, 024103 (2006)ADSCrossRefGoogle Scholar
  26. 26.
    G.D. Mukherjee, R. Boehler, Phys. Rev. Lett. 99, 225701 (2007)ADSCrossRefGoogle Scholar
  27. 27.
    D.A. Young, C.-S. Zha, R. Boehler, J. Yen, M. Nicol, A.S. Zinn, D. Schiferl, S. Kinkead, R.C. Hanson, D.A. Pinnick, Phys. Rev. B 35, 5353(R) (1987)ADSCrossRefGoogle Scholar
  28. 28.
    M.I. Erements, R.J. Hemley, H.-K. Mao, E. Gregoryanz, Nature 411, 170 (2001)ADSCrossRefGoogle Scholar
  29. 29.
    E. Gregoryanz, A.F. Goncharov, R.J. Hemley, H.-K. Mao, Phys. Rev. B 64, 052103 (2001)ADSCrossRefGoogle Scholar
  30. 30.
    T. Luty, G.S. Pawley, Chem. Phys. Lett. 28, 593 (1974)ADSCrossRefGoogle Scholar
  31. 31.
    R.L. Mills, A.F. Schuch, Phys. Rev. Lett. 23, 1154 (1969)ADSCrossRefGoogle Scholar
  32. 32.
    V.G. Manzhelii, Yu.A. Freiman (eds.), Physics of Cryocrystals (AIP, Woodbury, 1997)Google Scholar
  33. 33.
    M. Scheerboom, J. Schouten, Phys. Rev. Lett. 71, 2252 (1993)ADSCrossRefGoogle Scholar
  34. 34.
    D.T. Cromer, R.L. Mills, D. Schiferl, L.A. Schwalbe, Acta Crystallogr. Sect. B37, 8 (1981)CrossRefGoogle Scholar
  35. 35.
    E. Gregoryanz, A.F. Gocharov, C. Sanloup, M. Somayazulu, H.K. Mao, R.J. Hemley, J. Chem. Phys. 126, 184505 (2007)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of PhysicsGebze Technical UniversityGebzeTurkey
  2. 2.Department of MathematicsGebze Technical UniversityGebzeTurkey
  3. 3.Department of PhysicsMiddle East Technical UniversityAnkaraTurkey

Personalised recommendations