Temperature and Heat Flow Rate Calibration of a Calvet Calorimeter from \(0\,{^{\circ }}\hbox {C}\) to \(190 \,{^{\circ }}\hbox {C}\)

  • Daeho Kim
  • Joohyun LeeEmail author
  • Suyong Kwon
Part of the following topical collections:
  1. Special Issue: Advances in Thermophysical Properties


This study describes the temperature and heat flow rate calibrations of a Calvet calorimeter (SETARAM, BT2.15) in the temperature range of 0–190 \({^{\circ }}\hbox {C}\). Temperature calibration is carried out using three reference materials, namely water, gallium, and indium, as specified in the International Temperature Scale of 1990 (ITS-90). The sample temperature of the Calvet calorimeter is corrected by the obtained mean value, \(-0.489 \,{^{\circ }}\hbox {C}\), of the measured extrapolated peak onset temperature (\(T_{e})\) when the heating rate (\(\upbeta )\) is zero (\(\Delta T_\mathrm{corr }(\upbeta ~=~0\))). The heat flow rate is calibrated using a reference material with a known heat capacity, namely SRM 720 \(\alpha \)-\(\hbox {Al}_{2}\hbox {O}_{3}\) (synthetic sapphire), which is traceable to the National Institute of Standards and Technology. From the heat flow rate measurements of the blank baseline and SRM 720, the proportional calibration factor, \(\hbox {K}_{\Phi }\), in the 0–190\( \,{^{\circ }}\hbox {C}\) temperature range was determined. The specific heat capacity of copper was measured with the obtained calibration values, and the measured data show consistency with the reference value.


Calibration factor Calvet calorimeter DSC Heat flow calibration SRM 720 Temperature calibration 



This work was supported by Grant 17011046 from the Korea Research Institute of Standards and Science under the project ‘Establishment of National Physical Measurements Standards and Improvements of Calibration/Measurement Capability’.


  1. 1.
    Y.P. Handa, R.E. Hawkins, J.J. Murray, J. Chem. Termodyn. 16, 623–632 (1984). doi: 10.1016/0021-9614(84)90042-9 CrossRefGoogle Scholar
  2. 2.
    S.M. Sarge, G.W.H. Höhne, W. Hemminger, Calorimetry (WILEY-VCH, Weinheim, 2014), pp. 161–169CrossRefGoogle Scholar
  3. 3.
    S.M. Sarge, G.W.H. Höhne, H.K. Cammenga, W. Eysel, E. Gmelin, Thermochim. Acta 361, 1–20 (2000). doi: 10.1016/S0040-6031(00)00543-8 CrossRefGoogle Scholar
  4. 4.
    S.M. Sarge, E. Gmelin, G.W.H. Höhne, H.K. Cammenga, W. Hemminger, W. Eysel, Thermochim. Acta 247, 129–168 (1994). doi: 10.1016/0040-6031(94)80118- CrossRefGoogle Scholar
  5. 5.
    S. Rudtsch, Thermochim. Acta 382, 17–25 (2002). doi: 10.1016/S0040-6031(01)00730-4 CrossRefGoogle Scholar
  6. 6.
    R. Razouk, B. Hay, M. Himbert, Rev. Sci. Instrum. 84, 094903 (2013). doi: 10.1063/1.4821876 ADSCrossRefGoogle Scholar
  7. 7.
    R. Razouk, B. Hay, M. Himbert, Metrologia 52, 717–729 (2015). doi: 10.1088/0026-1394/52/5/717 ADSCrossRefGoogle Scholar
  8. 8.
    J.J. Manya, M.J. Antal Jr., C.K. Kinoshita, S.M. Masutani, Ind. Eng. Chem. Res. 50, 6470–6484 (2011). doi: 10.1021/ie102462g CrossRefGoogle Scholar
  9. 9.
    L.M. Casás, F. Plantier, M.M. Piñeiro, J.L. Legido, D. Bessières, Thermochim. Acta 507–508, 123–126 (2010). doi: 10.1016/j.tca.2010.05.012 CrossRefGoogle Scholar
  10. 10.
    R. Sabbah, A. Xu-wu, J.S. Chickos, M.L.P. Leitão, M.V. Roux, L.A. Torres, Thermochim. Acta 331, 93–204 (1999). doi: 10.1016/S0040-6031(99)00009-X CrossRefGoogle Scholar
  11. 11.
    H. Preston-Tomas, Metrologia 27, 3–10 (1990). doi: 10.1088/0026-1394/27/1/002 ADSCrossRefGoogle Scholar
  12. 12.
    G.W.H. Höhne, W.F. Hemminger, H.-J. Flammersheim, Differential Scanning Calorimetry, 2nd edn. (Springer, Berlin, 2003), pp. 69–90CrossRefGoogle Scholar
  13. 13.
    E967–80, Standard Test Method for Temperature Calibration of Differential Scanning Calorimeters and Differential Thermal Analyzers, 1983, reapproved 2014-03-15. doi:
  14. 14.
    E1269-11, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry, 2005, corrected and reprinted 2011-04-01. doi:
  15. 15.
    National Bureau of Standards Certificate–Standard Reference Material 720,
  16. 16.
    C.A. Nieto de Castro, M.J.V. Lourenco, M.O. Sampaio, Thermochim. Acta 347, 85–91 (2000). doi: 10.1016/S0040-6031(99)00420-7 CrossRefGoogle Scholar
  17. 17.
    M. W. Chase, Jr, NIST-JANAF Thermochemical Tables, Fourth Edition, Part II, Cr–Zr (American Chemical Society, Washington, DC; American Institiute of Physics for the National Institute of Standards and Technology, Woodbury, NY, 1998), p. 1006Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Center for Thermometry, Division of Physical MetrologyKorea Research Institute of Standards and ScienceDaejeonRepublic of Korea

Personalised recommendations