Thermal Conductivity and Thermal Boundary Resistances of ALD Al\(_{2}\)O\(_{3}\) Films on Si and Sapphire

  • Seung-Min LeeEmail author
  • Wonchul Choi
  • Junsoo Kim
  • Taekwang Kim
  • Jaewoo Lee
  • Sol Yee Im
  • Jung Yoon Kwon
  • Sunae Seo
  • Mincheol Shin
  • Seung Eon Moon
Part of the following topical collections:
  1. Special Issue: Advances in Thermophysical Properties


On Si and sapphire substrates, 6–45 nm thick films of atomic layer-deposited Al\(_{2}\)O\(_{3}\) were grown. The thermal conductivity of ALD films has been determined from a linear relation between film thickness and thermal resistance measured by the 3\(\omega \) method. ALD films on Si and sapphire showed almost same thermal conductivity in the temperature range of 50–350 K. Residual thermal resistance was also obtained by extrapolation of the linear fit and was modeled as a sum of the thermal boundary resistances at heater–film and film–substrate interfaces. The total thermal resistance addenda for films on sapphire was close to independently measured thermal boundary resistance of heater–sapphire interface. From the result, it was deduced that the thermal boundary resistance at ALD Al\(_{2}\)O\(_{3}\)–sapphire interface was much lower than that of heater–film. By contrast, the films on Si showed significantly larger thermal boundary resistance than films on sapphire. Data of \(< 30\) nm films on Si were excluded because an AC coupling of electrical heating voltage to semiconductive Si complicated the relation between 3\(\omega \) voltage and temperature.


3\( \omega \) method Al\(_{2}\)O\(_{3}\) Atomic layer deposition Thermal boundary resistance Thermal conductivity 



We would like to acknowledge the financial support from the R&D Convergence Program of NST (National Research Council of Science & Technology) of the Republic of Korea. This material was also supported by the Materials and Components Technology Development Program. of MOTIE/KEIT, Republic of Korea [No.10063286, “Development of high efficient thermoelectric module with figure of merit (Z) 3.4(\(\times \) \(10^{-3}\)) by using 1.0 kg/batch scale producible polycrystalline thermoelectric material with average figure of merit (ZT) 1.4 and over”].


  1. 1.
    A.W. Ott, J.W. Klaus, J.M. Johnson, S.M. George, Thin Solid Films 292, 135 (1997)ADSCrossRefGoogle Scholar
  2. 2.
    J.W. Elam, S.M. George, Chem. Mater. 15, 1020 (2003)CrossRefGoogle Scholar
  3. 3.
    M.D. Groner, F.H. Fabreguette, J.W. Elam, S.M. George, Chem. Mater. 16, 639 (2004)CrossRefGoogle Scholar
  4. 4.
    D.G. Cahill et al., J. Appl. Phys. 93, 793–818 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    D.G. Cahill et al., Appl. Phys. Rev. 1, 011305 (2014)ADSCrossRefGoogle Scholar
  6. 6.
    D.W. Oh, Adv. Mater. 23, 50285033 (2011)Google Scholar
  7. 7.
    R.B. Wilson et al., Phys. Rev. B 91, 115414 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    D.G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990)ADSCrossRefGoogle Scholar
  9. 9.
    S.E. Gustafsson, E. Karawacki, M.A. Chohan, J. Phys. D: Appl. Phys. 19, 727 (1986)ADSCrossRefGoogle Scholar
  10. 10.
    D.G. Cahill, S.-M. Lee, T.I. Selinder, J. Appl. Phys. 83, 5783–5786 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    A.J. Griffin Jr., F.R. Brotzen, P.J. Loos, J. Appl. Phys. 75, 3761–3764 (1994)ADSCrossRefGoogle Scholar
  12. 12.
    S.-M. Lee, D.G. Cahill, T.H. Allen, Phys. Rev. B 52, 253–257 (1995)ADSCrossRefGoogle Scholar
  13. 13.
    S.-M. Lee, D.G. Cahill, J. Appl. Phys. 81, 2590–2595 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    T. Borca-Tasciuc, A.R. Kumar, G. Chen, Rev. Sci. Instrum. 72, 2139–2147 (2001)ADSCrossRefGoogle Scholar
  15. 15.
    C. Monachon, L. Weber, Adv. Eng. Mater. 17, 68–75 (2015)CrossRefGoogle Scholar
  16. 16.
    C.S. Gorham et al., Appl. Phys. Lett. 104, 253107 (2014)ADSCrossRefGoogle Scholar
  17. 17.
    S.-M. Lee, Rev. Sci. Instrum. 80, 024901 (2009)ADSCrossRefGoogle Scholar
  18. 18.
    D.A. Ditmars, S. Ishihara, S.S. Chang, G. Bernstein, J. Res. Natl. Bur. Stand 87, 159–163 (1982)CrossRefGoogle Scholar
  19. 19.
    P.D. Desai, J. Phys. Chem. Ref. Data 15, 967–983 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    R. Cheaito et al., Phys. Rev. B 91, 035432 (2015)ADSCrossRefGoogle Scholar
  21. 21.
    S.-M. Lee et al., High Temp. High Press. 45, 439–449 (2016)Google Scholar
  22. 22.
    C. Monachon, L. Weber, C. Dames, Ann. Rev. Mater. Res. 46, 433–463 (2016)ADSCrossRefGoogle Scholar
  23. 23.
    D.G. Cahill, S.K. Watson, R.O. Pohl, Phys. Rev. B 46, 6131 (1992)ADSCrossRefGoogle Scholar
  24. 24.
    R.J. Stoner, H.J. Maris, Phys. Rev. B 48, 16373 (1993)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.ICT Materials Research GroupETRIDaejeonKorea
  2. 2.Department of PhysicsSejong UniversitySeoulKorea
  3. 3.School of Electrical EngineeringKAISTDaejeonKorea

Personalised recommendations