Advertisement

Comparative Investigation on the Heat Transfer Characteristics of Gaseous \(\hbox {CO}_{2}\) and Gaseous Water Flowing Through a Single Granite Fracture

  • Yuanyuan He
  • Bing BaiEmail author
  • Xiaochun Li
Article

Abstract

\(\hbox {CO}_{2}\) and water are two commonly employed heat transmission fluids in several fields. Their temperature and pressure determine their phase states, thus affecting the heat transfer performance of the water/\(\hbox {CO}_{2}\). The heat transfer characteristics of gaseous \(\hbox {CO}_{2}\) and gaseous water flowing through fractured hot dry rock still need a great deal of investigation, in order to understand and evaluate the heat extraction in enhanced geothermal systems. In this work, we develop a 2D numerical model to compare the heat transfer performance of gaseous \(\hbox {CO}_{2}\) and gaseous water flowing through a single fracture aperture of 0.2 mm in a \(\upphi 50\,\times 50\hbox { mm}\) cylindrical granite sample with a confining temperature of \(200\,^{\circ }\hbox {C}\) under different inlet mass flow rates. Our results indicate that: (1) the final outlet temperatures of the fluid are very close to the outer surface temperature under low inlet mass flow rate, regardless of the sample length. (2) Both the temperature of the fluid (gaseous \(\hbox {CO}_{2}\)/gaseous water) and inner surface temperature rise sharply at the inlet, and the inner surface temperature is always higher than the fluid temperature. However, their temperature difference becomes increasingly small. (3) Both the overall heat transfer coefficient (OHTC) and local heat transfer coefficient (LHTC) of gaseous \(\hbox {CO}_{2}\) and gaseous water increase with increasing inlet mass flow rates. (4) Both the OHTC and LHTC of gaseous \(\hbox {CO}_{2}\) are lower than those of gaseous water under the same conditions; therefore, the heat mining performance of gaseous water is superior to gaseous \(\hbox {CO}_{2}\) under high temperature and low pressure.

Keywords

Flow and heat transfer Gaseous \(\hbox {CO}_{2}\) Gaseous water HDR Single fracture 

Notes

Acknowledgements

The authors gratefully acknowledge the support of this work by the National Natural Science Foundation of China (Grant No. 41672252).

References

  1. 1.
    D. Duchane, B. Geoth, Resour. Council 19, 83–88 (1990). http://pubs.geothermal-library.org/lib/grc/7000408.pdf
  2. 2.
    Y.G. Liu, X. Zhu, G.F. Yue, W.J. Lin, Y.J. He, G.L. Wang, J. Groundw. Sci. Eng. 3, 170–175 (2015)Google Scholar
  3. 3.
    R. Rieberer, H. Halozan, in International Refrigeration and Air Conditioning Conference Paper 400 (1998). http://docs.lib.purdue.edu/iracc/400
  4. 4.
    J.T. Kwon, C.K. Lee, D.S. Baek, Y.C. Kwon, J. Korea Acad. Ind. Coop. Soc. 14, 5317–5322 (2013). doi: 10.5762/KAIS.2013.14.11.5317 CrossRefGoogle Scholar
  5. 5.
    V. Bespalov, V. Bespalov, D. Melnikov, EPJ Web Conf. 110, 01007 (2016). doi: 10.1051/epjconf/201611001007 CrossRefGoogle Scholar
  6. 6.
    Y.B. Liang, D.F. Che, Y.B. Kang, Heat Mass Transf. 43, 677–686 (2007)ADSCrossRefGoogle Scholar
  7. 7.
    M. Poirier, Dry. Technol. 25, 327–334 (2007)CrossRefGoogle Scholar
  8. 8.
    F. Luo, R.N. Xu, P.X. Jiang, Energy 64, 307–322 (2014)CrossRefGoogle Scholar
  9. 9.
    J.E. Mock, J.W. Tester, P.M. Wright, Annu. Rev. Energy Environ. 22, 305–56 (1997)CrossRefGoogle Scholar
  10. 10.
    M. Tarawneh, A.A. Alshqirate, K. Khasawneh, M. Hammad, Heat Transf. Asian Res. 42, 473 (2013)CrossRefGoogle Scholar
  11. 11.
    L. Shui, J. Gao, J. Liu, X.U. Liang, X. Shi, J. Xi, Jiaotong Univ. Chin. 46, 6–11 (2012)Google Scholar
  12. 12.
    C.W. Chen, T.Y. Lin, C.Y. Yang, S.G. Kandlikar, in Proceedings of the ASME 2011, 9th ICNMM (2011) June 19–22 Edmonton, Alberta, CanadaGoogle Scholar
  13. 13.
    M.H. Ge, Tianjin Univ. [in Chinese] (2014)Google Scholar
  14. 14.
    D. Fang, Shandong Univ. [in Chinese] (2014)Google Scholar
  15. 15.
    K. Pruess, in Proeedings of New Zealand Geothermal Workshop 2007, Auckland, New Zealand (2007)Google Scholar
  16. 16.
    J.W. Pritchett, GRC Trans. 33, 235 (2009)Google Scholar
  17. 17.
    S.H. Yoon, E.S. Cho, Y.W. Hwang, M.S. Kim, K. Min, Y. Kim, Int. J. Refrig. 27, 111 (2004)CrossRefGoogle Scholar
  18. 18.
    I.S. Lim, R.S. Tankin, M.C. Yuen, J. Heat Transf. 106, 425–432 (1984). [United States]CrossRefGoogle Scholar
  19. 19.
    T. Yamada, N. Haraguchi, E. Hihara, J.F. Wang, Therm. Sci. Eng. 13, 93–94 (2005)Google Scholar
  20. 20.
    D.E. White, L.I.P. Muffler, A.H. Truesdell, Econ. Geol. 66, 75–97 (1971)CrossRefGoogle Scholar
  21. 21.
    J. Pettersen, R. Rieberer, S.T. Munkejord, Tech. Rep. (2000)Google Scholar
  22. 22.
    B. Bai, Y.Y. He, X.C. Li, S.B. Hu, X.X. Huang, J. Li, J.L. Zhu, Environ. Earth. Sci. 75, 1460 (2016). doi: 10.1007/s12665-016-6249-2 CrossRefGoogle Scholar
  23. 23.
    L. Zhang, R.N. Xu, P.X. Jiang, J. Eng. Thermophys. 37, 1500–1505 (2016). [in Chinese]Google Scholar
  24. 24.
    Y.Y. He, B. Bai, S.B. Hu, X.C. Li, Comput. Geotech. 80, 312 (2016)CrossRefGoogle Scholar
  25. 25.
    W.J. Cao, J.L. Chen, F.M. Jiang, J. Jilin Univ. Earth Sci. Ed. 45, 1180–1188 (2015). [in Chinese]Google Scholar
  26. 26.
    E.W. Lemmon, M.L. Huber, M.O. Mclinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP. 9.0 (2010)Google Scholar
  27. 27.
    B. Cui, Chongqing Univ. (2014) [in Chinese]Google Scholar
  28. 28.
    B. Bai, Y.Y. He, X.C. Li, J. Li, X.X. Huang, J.L. Zhu, Appl. Therm. Eng. (2017). doi: 10.1016/j.applthermaleng.2017.01.020 CrossRefGoogle Scholar
  29. 29.
    A.J. Chapman, 4th edn. (Macmillan Publishing Company, New York, 1984)Google Scholar
  30. 30.
    Z. Zhao, Comput. Geotech. 59, 105 (2014). doi: 10.1016/j.compgeo.2014.03.002 CrossRefGoogle Scholar
  31. 31.
    J. Zhao, C.P. Tso, Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 30, 633–641 (1993). doi: 10.1016/0148-9062(93)91223-6 CrossRefGoogle Scholar
  32. 32.
    H.S. Carslaw, J.C. Jaeger, 2nd edn. (Oxford, 1959)Google Scholar
  33. 33.
    X.X. Huang, J.L. Zhu, J. Li, B. Bai, G.W. Zhang, Int. Commun. Heat Mass 75, 78 (2016). doi: 10.1016/j.icheatmasstransfer.2016.03.027 CrossRefGoogle Scholar
  34. 34.
    G.W. Zhang, in Proceedings World Geothermal Congress 2015, April 19–25, Melbourne, Australia (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil MechanicsChinese Academy of SciencesWuhanChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations