Advertisement

A Simple Prediction Method for the Surface Tension of Ionic Liquids as a Function of Temperature

  • Thomas M. KollerEmail author
  • Corina Steininger
  • Michael H. Rausch
  • Andreas P. Fröba
Article

Abstract

In this study, a simple prediction method for the surface tension of ionic liquids (ILs) as a function of temperature is developed. Based on a database of experimental surface tension values collected from the literature, first a prediction scheme for the surface tension at a reference temperature of 298.15 K using only information on the density, molar mass, and anion type of the IL is suggested. By combination of this approach with the temperature dependence of the density, an extended prediction scheme describing the temperature dependence of the surface tension of ILs is recommended. The optimized prediction model for the surface tension allows for the prediction of about 3500 temperature-dependent experimental surface tension data of 226 different ILs with a standard deviation of about 7 %. In comparison with fluid-specific prediction methods found in the literature, the developed simple empirical prediction model requires only easily accessible parameters and can be applied for ILs with arbitrary cation and anion combinations. Thus, the proposed prediction method seems to be a valuable engineering tool for the quantitative estimation of the surface tension of ILs.

Keywords

Density Ionic liquids Prediction Surface tension Temperature 

Notes

Acknowledgements

This work was supported by the German Research Foundation (Deutsche Forschungsgemeinschaft, DFG) by funding the Erlangen Graduate School in Advanced Optical Technologies (SAOT) within the German Excellence Initiative.

Supplementary material

10765_2017_2301_MOESM1_ESM.docx (335 kb)
Supplementary material 1 (docx 334 KB)

References

  1. 1.
    M. Smiglak, A. Metlen, Acc. Chem. Res. 40, 1182 (2007)CrossRefGoogle Scholar
  2. 2.
    J.A.P. Coutinho, P.J. Carvalho, N.M.C. Oliveira, RSC Adv. 2, 7322 (2012)CrossRefGoogle Scholar
  3. 3.
    S. Hanioka, T. Maruyamaa, T. Sotani, M. Teramoto, H. Matsuyamaa, K. Nakashima, M. Hanaki, F. Kubota, M. Goto, J. Membr. Sci. 314, 1 (2008)CrossRefGoogle Scholar
  4. 4.
    D. Kuang, P. Wang, S. Ito, S.M. Zakeeruddin, M. Grätzel, J. Am. Chem. Soc. 128, 7732 (2006)CrossRefGoogle Scholar
  5. 5.
    L. Moens, D.M. Blake, D.L. Rudnicki, M.J. Hale, J. Sol. Energy 125, 112 (2003)CrossRefGoogle Scholar
  6. 6.
    S. Walter, M. Haumann, P. Wasserscheid, H. Hahn, R. Franke, AIChE J. 61, 893 (2015)CrossRefGoogle Scholar
  7. 7.
    P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, 2nd edn. (Wiley-VCH, Weinheim, 2007)CrossRefGoogle Scholar
  8. 8.
    A. Kazakov, J.W. Magee, R.D. Chirico, E. Paulechka, V. Diky, C.D. Muzny, K. Kroenlein, M. Frenkel, NIST Standard Reference Database 147: NIST Ionic Liquids Database—(IL Thermo), Version 2.0 (National Institute of Standards and Technology, Gaithersburg, 2006). http://ilthermo.boulder.nist.gov
  9. 9.
    M. Tariq, M.G. Freire, B. Saramago, J.A.P. Coutinho, J.N. Canongia Lopes, L.P.N. Rebelo, Chem. Soc. Rev. 41, 829 (2012)CrossRefGoogle Scholar
  10. 10.
    M.H. Ghatee, M. Bahrami, N. Khanjari, J. Chem. Thermodyn. 65, 42 (2013)CrossRefGoogle Scholar
  11. 11.
    Q.-S. Liu, Z. Li, U. Welz-Biermann, C.-P. Li, X.-X. Liu, J. Chem. Eng. Data 58, 93 (2013)CrossRefGoogle Scholar
  12. 12.
    P. Navarro, M. Larriba, J. García, F. Rodríguez, J. Chem. Thermodyn. 76, 152 (2014)CrossRefGoogle Scholar
  13. 13.
    M.L.S. Batista, J.A.P. Coutinho, J.R.B. Gomes, Curr. Phys. Chem. 4, 151 (2014)CrossRefGoogle Scholar
  14. 14.
    E.J. Maginn, J. Phys. Condens. Matter 21, 37310101 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, W. Jiang, T. Yan, G.A. Voth, Acc. Chem. Res. 40, 1193 (2007)CrossRefGoogle Scholar
  16. 16.
    B.L. Bhargava, S. Balasubramanian, J. Chem. Phys. 127, 114510 (2007)ADSCrossRefGoogle Scholar
  17. 17.
    B. Heggen, W. Zhao, F. Leroy, A.J. Dammers, F. Müller-Plathe, J. Phys. Chem. B 114, 6954 (2010)CrossRefGoogle Scholar
  18. 18.
    E.I. Izgorodina, Phys. Chem. Chem. Phys. 13, 4189 (2011)CrossRefGoogle Scholar
  19. 19.
    J.N.A. Lopes, C.M.F. Gomes, A.A.H. Pádua, J. Phys. Chem. B 110, 16816 (2006)CrossRefGoogle Scholar
  20. 20.
    A. Triolo, O. Russina, H.-J. Bleif, E. Di Cola, J. Phys. Chem. B 111, 4641 (2007)CrossRefGoogle Scholar
  21. 21.
    L.F. Vega, O. Vilaseca, F. Llovell, J.S. Andreu, Fluid Phase Eq. 294, 15 (2010)CrossRefGoogle Scholar
  22. 22.
    L.P.N. Rebelo, J.N. Canongia Lopes, J.M.S.S. Esperança, E. Filipe, J. Phys. Chem. B 109, 6040 (2005)CrossRefGoogle Scholar
  23. 23.
    C. Kolbeck, J. Lehmann, K.R.J. Lovelock, T. Cremer, N. Paape, P. Wasserscheid, A.P. Fröba, F. Maier, H.-P. Steinrück, J. Phys. Chem. B 114, 17025 (2010)CrossRefGoogle Scholar
  24. 24.
    D.B. MacLeod, Trans. Faraday Soc. 19, 38 (1923)CrossRefGoogle Scholar
  25. 25.
    S. Sugden, J. Chem. Soc. Trans. 125, 32 (1924)CrossRefGoogle Scholar
  26. 26.
    T.A. Knotts, W.V. Wilding, J.L. Oscarson, R.L. Rowley, J. Chem. Eng. Data 46, 1007 (2001)CrossRefGoogle Scholar
  27. 27.
    R.L. Gardas, J.A.P. Coutinho, Fluid Phase Equilib. 265, 57 (2008)CrossRefGoogle Scholar
  28. 28.
    D.H. Zaitsau, G.J. Kabo, A.A. Strechan, Y.U. Paulechka, A. Tschersich, S.P. Verevkin, A. Heintz, J. Phys. Chem. B 2006, 7303 (2006)CrossRefGoogle Scholar
  29. 29.
    F. Gharagheizi, P. Ilani-Kashkouli, A.H. Mohammadi, Chem. Eng. Sci. 78, 204 (2012)CrossRefGoogle Scholar
  30. 30.
    K.-J. Wu, C.-X. Zhao, C.-H. He, Fluid Phase Equilib. 328, 42 (2012)CrossRefGoogle Scholar
  31. 31.
    E.A. Guggenheim, J. Chem. Phys. 13, 253 (1945)ADSCrossRefGoogle Scholar
  32. 32.
    J.O. Valderrama, R.E. Rojas, Ind. Chem. Eng. Res. 48, 6890 (2009)CrossRefGoogle Scholar
  33. 33.
    Y. Huang, H. Dong, X. Zhang, C. Li, S. Zhang, AIChE J. 59, 1348 (2013)CrossRefGoogle Scholar
  34. 34.
    J.R. Brock, R.B. Bird, AIChE J. 1, 174 (1955)CrossRefGoogle Scholar
  35. 35.
    K.S. Pitzer, J. Chem. Phys. 7, 583 (1939)ADSCrossRefGoogle Scholar
  36. 36.
    M.H. Mousazadeh, E. Faramarzi, Ionics 17, 217 (2011)CrossRefGoogle Scholar
  37. 37.
    Q. Shang, F. Yan, S. Xia, Q. Wang, P. Ma, Chem. Eng. Sci. 101, 266 (2013)CrossRefGoogle Scholar
  38. 38.
    S.A. Mirkhani, F. Gharagheizi, N. Farahani, K. Tumba, J. Mol. Liq. 179, 78 (2013)CrossRefGoogle Scholar
  39. 39.
    S. Atashrouz, E. Amini, G. Pazuki, Ionics 21, 1595 (2014)CrossRefGoogle Scholar
  40. 40.
    E. Ghasemian, R. Zobeydi, Fluid Phase Equilib. 358, 40 (2013)CrossRefGoogle Scholar
  41. 41.
    M.G. Freire, P.J. Carvalho, A.M. Fernandes, I.M. Marrucho, A.J. Queimada, J.A. Coutinho, J. Colloid Interface Sci. 314, 621 (2007)ADSCrossRefGoogle Scholar
  42. 42.
    T.M. Koller, M.H. Rausch, K. Pohako-Esko, P. Wasserscheid, A.P. Fröba, J. Chem. Eng. Data 60, 2665 (2015)CrossRefGoogle Scholar
  43. 43.
    W. Guan, X.X. Ma, L. Li, J. Tong, D.W. Fang, J.Z. Yang, J. Phys. Chem. B 115, 12915 (2011)CrossRefGoogle Scholar
  44. 44.
    M. Součková, J. Klomfar, J. Pátek, Fluid Phase Equilib. 303, 184 (2011)CrossRefGoogle Scholar
  45. 45.
    I. Langmuir, Chem. Rev. 6, 451 (1930)CrossRefGoogle Scholar
  46. 46.
    H.F.D. Almeida, M.G. Freire, A.M. Fernandes, J.A. Lopes-da-Silva, P. Morgado, K. Shimizu, E.J.M. Filipe, J.N. Canongia Lopes, L.M.N.B.F. Santos, J.A.P. Coutinho, Langmuir 30, 6408 (2014)CrossRefGoogle Scholar
  47. 47.
    H. Tokuda, K. Ishii, M.A.B.H. Susan, S. Tsuzuki, K. Hayamizu, M. Watanabe, J. Phys. Chem. B 110, 2833 (2006)CrossRefGoogle Scholar
  48. 48.
    B.E. Poling, J.M. Prausnitz, J.P. O’Connell, The Properties of Gases and Liquids, 5th edn. (McGraw-Hill, New York, 2001)Google Scholar
  49. 49.
    H.F.D. Almeida, H. Passos, J.A. Lopes-da-Silva, A.M. Fernandes, M.G. Freire, J.A.P. Coutinho, J. Chem. Eng. Data 57, 3005 (2012)CrossRefGoogle Scholar
  50. 50.
    H.F.D. Almeida, A.R.R. Teles, J.A. Lopes-da-Silva, M.G. Freire, J.A.P. Coutinho, J. Chem. Thermodyn. 54, 49 (2012)CrossRefGoogle Scholar
  51. 51.
    I. Bandrés, B. Giner, H. Artigas, F.M. Royo, C. Lafuente, J. Phys. Chem. B 112, 3077 (2008)CrossRefGoogle Scholar
  52. 52.
    O. Ben Ghanem, M.I.A. Mutalib, J.-M. Lévêque, G. Gonfa, C.F. Kait, M. El-Harbawi, J. Chem. Eng. Data 60, 1756 (2015)CrossRefGoogle Scholar
  53. 53.
    M.C. Castro, H. Rodríguez, A. Arce, A. Soto, Ind. Chem. Eng. Res. 53, 11850 (2014)CrossRefGoogle Scholar
  54. 54.
    S.I. Fletcher, F.B. Sillars, N.E. Hudson, P.J. Hall, J. Chem. Eng. Data 55, 778 (2010)CrossRefGoogle Scholar
  55. 55.
    A.P. Fröba, H. Kremer, A. Leipertz, J. Phys. Chem. B 112, 12420 (2008)CrossRefGoogle Scholar
  56. 56.
    W. Guan, J. Tong, S.-P. Chen, Q.-S. Liu, S.-L. Gao, J. Chem. Eng. Data 55, 4075 (2010)CrossRefGoogle Scholar
  57. 57.
    M. Ismail Hossain, M.-R. Babaa, M. El-Harbawi, Z. Man, G. Hefter, C.-Y. Yin, J. Chem. Eng. Data 56, 4188 (2011)CrossRefGoogle Scholar
  58. 58.
    Z. Jiqin, C. Jian, L. Chengyue, F. Weiyang, J. Chem. Eng. Data 52, 812 (2007)CrossRefGoogle Scholar
  59. 59.
    P. Kilaru, G.A. Baker, P. Scovazzo, J. Chem. Eng. Data 52, 2306 (2007)CrossRefGoogle Scholar
  60. 60.
    J. Klomfar, M. Součková, J. Pátek, J. Chem. Eng. Data 56, 3454 (2011)CrossRefGoogle Scholar
  61. 61.
    W. Martino, J. Fernandez de la Mora, Y. Yoshida, G. Saito, J. Wilkes, Green Chem. 8, 390 (2006)CrossRefGoogle Scholar
  62. 62.
    E. Quijada-Maldonado, S. van der Boogaart, J.H. Lijbers, G.W. Meindersma, A.B. de Haan, J. Chem. Thermodyn. 51, 51 (2012)CrossRefGoogle Scholar
  63. 63.
    M. Shamsipur, A.A.M. Beigi, M. Teymouri, S.M. Pourmortazavi, M. Irandoust, J. Mol. Liq. 157, 43 (2010)CrossRefGoogle Scholar
  64. 64.
    Y. Yoshida, O. Baba, C. Larriba, G. Saito, J. Phys. Chem. B 111, 12204 (2007)CrossRefGoogle Scholar
  65. 65.
    M.S. AlTuwaim, K.H.A.E. Alkhaldi, A.S. Al-Jimaz, A.A. Mohammad, J. Chem. Eng. Data 59, 1955 (2014)CrossRefGoogle Scholar
  66. 66.
    D.K. Owens, R.C. Wendt, J. Appl. Polym. Sci. 13, 1741 (1969)CrossRefGoogle Scholar
  67. 67.
    T.M. Koller, M.H. Rausch, P.S. Schulz, M. Berger, P. Wasserscheid, I.G. Economou, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 57, 828 (2012)CrossRefGoogle Scholar
  68. 68.
    T.M. Koller, A. Heller, M.H. Rausch, P. Wasserscheid, I.G. Economou, A.P. Fröba, J. Phys. Chem. B 119, 8583 (2015)CrossRefGoogle Scholar
  69. 69.
    T.M. Koller, S.R. Schmid, S.J. Sachnov, M.H. Rausch, P. Wasserscheid, A.P. Fröba, Int. J. Thermophys. 35, 195 (2014)ADSCrossRefGoogle Scholar
  70. 70.
    A.P. Fröba, A. Leipertz, J. Chem. Eng. Data 52, 1803 (2007)CrossRefGoogle Scholar
  71. 71.
    B. Hasse, J. Lehmann, D. Assenbaum, P. Wasserscheid, A. Leipertz, A.P. Fröba, J. Chem. Eng. Data 54, 2576 (2009)CrossRefGoogle Scholar
  72. 72.
    T.M. Koller, J. Ramos, P.S. Schulz, I.G. Economou, M.H. Rausch, A.P. Fröba, J. Phys. Chem. B 121, 4145 (2017)CrossRefGoogle Scholar
  73. 73.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, REFPROP: Reference Fluid Thermodynamic and Transport Properties, NIST Standard Reference Database 23, Version 9.1, Standard Reference Data Program (National Institute of Standards and Technology, Gaithersburg, 2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Institute of Advanced Optical Technologies – Thermophysical Properties (AOT-TP), Department of Chemical and Biological Engineering (CBI) and Erlangen Graduate School in Advanced Optical Technologies (SAOT)Friedrich-Alexander-University Erlangen-Nürnberg (FAU)ErlangenGermany

Personalised recommendations