Laser Fluence Recognition Using Computationally Intelligent Pulsed Photoacoustics Within the Trace Gases Analysis

  • M. LukićEmail author
  • Ž. Ćojbašić
  • M. D. Rabasović
  • D. D. Markushev
  • D. M. Todorović
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


In this paper, the possibilities of computational intelligence applications for trace gas monitoring are discussed. For this, pulsed infrared photoacoustics is used to investigate \(\hbox {SF}_{6}\)–Ar mixtures in a multiphoton regime, assisted by artificial neural networks. Feedforward multilayer perceptron networks are applied in order to recognize both the spatial characteristics of the laser beam and the values of laser fluence \(\Phi \) from the given photoacoustic signal and prevent changes. Neural networks are trained in an offline batch training regime to simultaneously estimate four parameters from theoretical or experimental photoacoustic signals: the laser beam spatial profile R(r), vibrational-to-translational relaxation time \(\tau _{V-T} \), distance from the laser beam to the absorption molecules in the photoacoustic cell r* and laser fluence \(\Phi \). The results presented in this paper show that neural networks can estimate an unknown laser beam spatial profile and the parameters of photoacoustic signals in real time and with high precision. Real-time operation, high accuracy and the possibility of application for higher intensities of radiation for a wide range of laser fluencies are factors that classify the computational intelligence approach as efficient and powerful for the in situ measurement of atmospheric pollutants.


Artificial neural networks Laser beam profile Laser fluence Multiphoton processes Photoacoustic spectroscopy 



This work has been supported by the Ministry of Education, Science and Technological Development of Republic of Serbia under the Grants ON171016 and TR35016.


  1. 1.
    V. Zeninari, R. Vallon, C. Risser, B. Parvitte, J. Thermophys. 37, 7 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    X. Mao, X. Zhou, Z. Gong, Q. Yu, Sens. Actuators B Chem. 232, 251 (2016)CrossRefGoogle Scholar
  3. 3.
    V. Spagnolo, P. Patimisco, A. Sampaolo, M. Giglio, L. Dong, G. Scamarcio, F. K. Tittel, in Proceedings of SPIE 9899, Optical Sensing and Detection IV, 98990S, 29 Apr 2016. doi: 10.1117/12.2228701
  4. 4.
    D.D. Markushev, J. Jovanović-Kurepa, M. Terzić, J. Quant. Spectrosc. Radiat. Transf. 76, 85 (2003)ADSCrossRefGoogle Scholar
  5. 5.
    J. Gajević, M. Stević, J. Nikolić, M. Rabasović, D. Markushev, Facta Universitatis 4, 57 (2006)Google Scholar
  6. 6.
    M. Terzić, D.D. Markushev, J. Jovanović-Kurepa, Rev. Sci. Instrum. 74, 322 (2003)ADSCrossRefGoogle Scholar
  7. 7.
    J.D. Nikolić, M.D. Rabasović, D.D. Markushev, J. Jovanović-Kurepa, Opt. Mater. 30, 1193 (2008)ADSCrossRefGoogle Scholar
  8. 8.
    D.D. Markusev, J. Jovanovic-Kurepa, J. Slivka, M. Terzic, J. Quant. Spectrosc. Radiat. Transf. 61, 825 (1999)ADSCrossRefGoogle Scholar
  9. 9.
    M. Terzić, J. Jovanović-Kurepa, D.D. Markušev, J. Phys. B At. Mol. Opt. Phys. 32, 1193 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, Meas. Sci. Technol. 25, 125203 (2014)Google Scholar
  11. 11.
    M.D. Rabasović, D.D. Markushev, J. Jovanović-Kurepa, Meas. Sci. Technol. 17, 1826 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    K.M. Beck, R.J. Gordon, J. Chem. Phys. 87, 5681 (1987)ADSCrossRefGoogle Scholar
  13. 13.
    K.M. Beck, R.J. Gordon, J. Chem. Phys. 89, 5560 (1988)ADSCrossRefGoogle Scholar
  14. 14.
    M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, D. Todorović, Int. J. Thermophys. 34, 1466 (2013)Google Scholar
  15. 15.
    M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, D. Todorović, Int. J. Thermophys. 34, 1795 (2013)Google Scholar
  16. 16.
    M. Lukić, Ž. Ćojbašić, M. Rabasović, D. Markushev, D. Todorović, Facta Universitatis Ser. Phys. Chem. Technol. 10, 1 (2012)Google Scholar
  17. 17.
    M.D. Rabasović, J. Nikolić, D.D. Markushev, Appl. Phys. B 88, 309 (2007)Google Scholar
  18. 18.
    L. Liu, J. Rong, L. Huang, K. Lu, X. Zhong, in 5th IEEE International Symposium on Computational Intelligence and Design (ISCID), 28–29 Oct 2012, Hangzhou, China, pp. 2515–2518 (2012)Google Scholar
  19. 19.
    M.D. Rabasović, J.D. Nikolić, D.D. Markushev, Meas. Sci. Technol. 17, 2938 (2006)ADSCrossRefGoogle Scholar
  20. 20.
    J. Jovanovic-Kurepa, D.D. Markusev, M. Terzic, Chem. Phys. 211, 347 (1996)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • M. Lukić
    • 1
    Email author
  • Ž. Ćojbašić
    • 2
  • M. D. Rabasović
    • 3
  • D. D. Markushev
    • 3
  • D. M. Todorović
    • 4
  1. 1.Faculty of Occupational SafetyUniversity of NišNišSerbia
  2. 2.Mechanical Engineering FacultyUniversity of NišNišSerbia
  3. 3.Institute of PhysicsUniversity of BelgradeBelgrade-ZemunSerbia
  4. 4.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations