Thermodynamic Investigation of the Eutectic Mixture of the \(\hbox {LiNO}_{3}\)\(\hbox {NaNO}_{3}\)\(\hbox {KNO}_{3}\)\(\hbox {Ca}(\hbox {NO}_{3})_{2}\) System

  • Qiang PengEmail author
  • Jing Ding
  • Xiaolan Wei
  • Gan Jiang


Molten nitrate salt is usually employed as heat transfer or energy storage medium in concentrating solar power systems to improve the overall efficiency of thermoelectric conversion. In the present work, the liquidus curves of the \(\hbox {LiNO}_{3}\)\(\hbox {NaNO}_{3}\)\(\hbox {KNO}_{3}\)\(\hbox {Ca}(\hbox {NO}_{3})_{2}\) system is determined by conformal ionic solution theory according to the solid–liquid equilibrium state of the binary mixture. The calculated eutectic temperature of the mixture is \(93.17\,{^{\circ }}\hbox {C}\), which is close to the experimental value of \(93.22\,{^{\circ }}\hbox {C}\) obtained from differential scanning calorimetry (DSC). Visualization observation experiments reveal that the quaternary eutectic mixture begins to partially melt when the temperature reaches \(50\,{^{\circ }}\hbox {C}\), and the degree of melting increases with temperature. The mixture is completely melted at \(\hbox {130}\,{^{\circ }}\hbox {C}\). The observed changes in the dissolved state at different temperatures correlate well with the DSC heat flow curve fluctuations.


Differential scanning calorimetry (DSC) Eutectic mixture Molten nitrate salts Thermodynamic modeling 

List of symbols

\(\Delta G^{E}\)

Total excess free energy of mixing, \(\hbox {J}\cdot \hbox {mol}^{-1}\)

\(\Delta G_{\mathrm{i}}^E \)

Excess free energy of mixing, \(\hbox {J}\cdot \hbox {mol}^{-1}\)

\(\lambda _{ij} \)

Binary interaction energy parameter, \(\hbox {J}\cdot \hbox {mol}^{-1}\)

\(\Delta H_i^o \)

Enthalpy of fusion, \(\hbox {J}\cdot \hbox {mol}^{-1}\)

\(\Delta H_\mathrm{tr}\)

Transition enthalpy, \(\hbox {J}\cdot \hbox {mol}^{-1}\)

\(\Delta C_{p(i)} \)

Heat capacity difference between pure solid–liquid salt, \(\hbox {J}\cdot \hbox {mol}^{-1}\cdot \hbox {K}^{-1}\)

\(T_i^o \)

Melting point, K


Transition temperature, K



This work is supported by the National Natural Science Foundation of China (Grant Nos. 51406038, 51436009, 51376067). The authors would like to thank Edanz Group China for their editing work.


  1. 1.
    D.H. Wang, J.K. Kim, J.H. Seo, O.O. Park, J.H. Park, Sol. Energy Mater. Sol. Cells 101, 249 (2012)CrossRefGoogle Scholar
  2. 2.
    G.C. Glatzmaier, J. Gomez, J. Ortega, A. Starace, C. Turchi, in SolarPACES 2011 (Granada, 2011)Google Scholar
  3. 3.
    M. Liu, N.H. Steven Tay, S. Bell, M. Belusko, R. Jacob, W. Geoffrey, W. Saman, F. Bruno, Renew. Sustain. Energy Rev. 53, 1411 (2016)CrossRefGoogle Scholar
  4. 4.
    S. Kuravi, J. Trahan, D.Y. Goswami, M.M. Rahman, E.K. Stefanakos, Prog. Energy Combust. 39, 285 (2013)CrossRefGoogle Scholar
  5. 5.
    D. Kearney, B. Kelly, U. Herrmann, R. Cable, J. Pacheco, R. Mahoney, H. Price, D. Blake, P. Nava, N. Potrovitza, Energy 29, 861 (2004)CrossRefGoogle Scholar
  6. 6.
    R.I. Dunn, P.J. Hearps, M.N. Wright, Proc. IEEE 100, 504 (2012)CrossRefGoogle Scholar
  7. 7.
    J.I. Burgaleta, S. Arias, D. Ramirez, in SolarPACES 2011 (Granada, 2011)Google Scholar
  8. 8.
    W.R. Gould Jr., in SolarPACES 2011 (Granada, 2011)Google Scholar
  9. 9.
    R.W. Bradshaw, R.W. Carling, Sandia National Laboratories Technical Report No. SAND87-8005 (1987)Google Scholar
  10. 10.
    Badger Energy Corp., Sandia National Laboratories Technical Report No. SAND81-8179 (1981)Google Scholar
  11. 11.
    J.G. Cordaro, N.C. Rubin, R.W. Bradshaw, ASME J. Sol. Energy Eng. 133, 011014 (2011)CrossRefGoogle Scholar
  12. 12.
    T. Wang, D. Mantha, R.G. Reddy, Appl. Energy 102, 1422 (2013)CrossRefGoogle Scholar
  13. 13.
    Q. Peng, J. Ding, X.L. Wei, J.P. Yang, X.X. Yang, Appl. Energy 87, 2812 (2010)CrossRefGoogle Scholar
  14. 14.
    X.L. Wei, M. Song, W.L. Wang, J. Ding, J.P. Yang, Appl. Energy 156, 306 (2015)CrossRefGoogle Scholar
  15. 15.
    Q. Peng, J. Ding, X.L. Wei, G. Jiang, X.X. Yang, Int. J. Thermophys. 36, 2833 (2015)ADSCrossRefGoogle Scholar
  16. 16.
    L.X. Sang, M. Cai, Y.B. Zhao, N. Ren, Y.T. Wu, C. Burda, Sol. Energy Mater. Sol. Cells 140, 167 (2015)CrossRefGoogle Scholar
  17. 17.
    C.Y. Zhao, Y.N. Ji, Z.G. Xu, Sol. Energy Mater. Sol. Cells 140, 281 (2015)CrossRefGoogle Scholar
  18. 18.
    J.T. Wang, M.Z. Lai, H.J. Han, D.W. Zeng, J. Therm. Anal. Calorim. 119, 1259 (2015)CrossRefGoogle Scholar
  19. 19.
    A.G. Fernandez, S. Ushak, H. Galleguillos, F.J. Perez, Sol. Energy Mater. Sol. Cells 132, 172 (2015)CrossRefGoogle Scholar
  20. 20.
    R.W. Bradshaw, J.G. Cordaro, N.P. Siegel, ES2009 (California, 2009)Google Scholar
  21. 21.
    R.W. Bradshaw, D.A. Brosseau, US7588694B1 (2009)Google Scholar
  22. 22.
    N. Ren, Y.T. Wu, C.F. Ma, L.X. Sang, Sol. Energy Mater. Sol. Cells 127, 6 (2014)CrossRefGoogle Scholar
  23. 23.
    J. Paulik, F. Paulik, M. Arnold, J. Therm. Anal. 27, 409 (1983)CrossRefGoogle Scholar
  24. 24.
    H. Reiss, J.L. Katz, O.J. Kleppa, J. Chem. Phys. 36, 144 (1962)ADSCrossRefGoogle Scholar
  25. 25.
    M. Blander, S.J. Yosim, J. Chem. Phys. 39, 2610 (1963)ADSCrossRefGoogle Scholar
  26. 26.
    Q. Peng, J. Ding, X.X. Yang, X.L. Wei, J.P. Yang, Int. J. Thermophys. 34, 831 (2013)ADSCrossRefGoogle Scholar
  27. 27.
    Q. Peng, X.X. Yang, J. Ding, X.L. Wei, J.P. Yang, J. Therm. Anal. Calorim. 115, 1753 (2014)CrossRefGoogle Scholar
  28. 28.
    Q. Peng, X.X. Yang, J. Ding, X.L. Wei, J.P. Yang, Appl. Energy 112, 682 (2013)CrossRefGoogle Scholar
  29. 29.
    I.J. Gal, I. Paligorid, J. Chem. Soc. Faraday Trans. 1 78, 1993 (1982)CrossRefGoogle Scholar
  30. 30.
    I.J. Gal, I.J. Zsigrai, I. Paligoric, K. Szecsenyi-Meszaros, J. Chem. Soc. Faraday Trans. 1 79, 2171 (1983)CrossRefGoogle Scholar
  31. 31.
    D. Mantha, T. Wang, R.G. Reddy, J. Phase Equilib. Diffus. 33, 110 (2012)CrossRefGoogle Scholar
  32. 32.
    M.W.J. Chase, NIST-JANAF Thermochemical Tables (American Chemical Society, Washington, 1998)Google Scholar
  33. 33.
    I. Barin, Thermochemical Data of Pure Substances (Wiley, New York, 1995)CrossRefGoogle Scholar
  34. 34.
    G.J. Janz, Molten Salts Handbook (Academic Press, New York, 1967)Google Scholar
  35. 35.
    E.M. Levin, C.R. Robbins, H.F. Mcmurdie, Phase Diagrams for Ceramists (American Ceramic Society, Columbus, Ohio, 1986)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Chemistry and Chemical EngineeringGuangDong Pharmaceutical UniversityZhongshanPeople’s Republic of China
  2. 2.School of EngineeringSun Yat-sen UniversityGuangzhouPeople’s Republic of China
  3. 3.School of Chemistry and Chemical EngineeringSouth China University of TechnologyGuangzhouPeople’s Republic of China

Personalised recommendations