Advertisement

Photothermal Mirror Method for the Study of Thermal Diffusivity and Thermo-Elastic Properties of Opaque Solid Materials

  • Aristides MarcanoEmail author
  • Gabriel Gwanmesia
  • Bizenuh Workie
Article
  • 135 Downloads

Abstract

We have carried out the theoretical and experimental time evolution and amplitude study of the photothermal mirror signal generated by focusing a laser beam on the surface of a suite of solid samples. Based on a theoretical model that resolves the thermal diffusivity equation and the equation for thermo-elastic deformations simultaneously, we have calculated the transient time evolution and amplitude of the signal. We observe the same time evolution pattern for samples as diverse as glass, quartz, metals, and synthetic ceramic oxides. The data have yielded a linear dependence between the time build-up of the thermal mirror and the inverse of the thermal diffusivity for all the samples. For moderate power levels, we also observe a linear behavior between the stationary value of the signal and the thermally induced phase shift value. From the calibration curves, we have determined the thermally induced phase and the thermal diffusivity coefficients of two prospective nuclear reactor control rod materials, dysprosium titanate (\(\hbox {Dy}_{2}\hbox {TiO}_{5}\)) and dysprosium dititanate (\(\hbox {Dy}_{2}\hbox {Ti}_{2}\hbox {O}_{7}\)) to be \(D = (7.0 \pm 0.4) \times 10^{-7} \mathrm{m^{2}\cdot s^{-1}}\).

Keywords

Photothermal effect Photothermal mirror method Photothermal properties of materials Thermal diffusivity of materials 

Notes

Acknowledgements

The synthetic polycrystalline dysprosium specimens, used in this study, were hot-pressed using the large-volume, Kawai-type multi-anvil high-pressure apparatus in the High-Pressure laboratory at the Mineral Physics Institute (MPI), in the Geosciences Department at the Stony Brook University, in New York.

Compliance with Ethical Standards

Conflict of interest

The authors declare that there are not conflict of interest or bias in the present work.

References

  1. 1.
    P. Kuo, M. Munidasa, Single-beam interferometry of a thermal bump. Appl. Opt. 29, 5326–5331 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    B.C. Li, Z. Zhen, S. He, Modulated photothermal deformation in solids. J. Phys. D Appl. Phys. 24, 2196–2201 (1991)ADSCrossRefGoogle Scholar
  3. 3.
    T. Elperin, G. Rudin, Thermal mirror method for measuring physical properties of multilayered coatings. Int. J. Thermophys. 28, 60–82 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    N.G.C. Astrath, L.C. Malacarne, P.R.B. Pedreira, A.C. Bento, M.L. Baesso, J. Shen, Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids. Appl. Phys. Lett. 91, 191908 (2007)ADSCrossRefGoogle Scholar
  5. 5.
    F. Sato, L.C. Malacarne, P.R.B. Pedreira, M.P. Belancon, R.S. Mendes, M.L. Baesso, N.G.C. Astrath, J. Shen, Time-resolved thermal mirror method: a theoretical study. J. Appl. Phys. 104, 053520 (2008)ADSCrossRefGoogle Scholar
  6. 6.
    N.G.C. Astrath, L.C. Malacarne, V.S. Zanuto, M.P. Belancon, R.S. Mendes, M.L. Baesso, C. Jacinto, Finite-size effect on the surface deformation thermal mirror method. J. Opt. Soc. Am. B 28, 1735–1739 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    L.C. Malacarne, N.G.C. Astrath, G.V.B. Lukasievicz, E.K. Lenzi, M.L. Baesso, S.E. Bialkowski, Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization. Appl. Spectrosc. 65, 99–104 (2011)ADSCrossRefGoogle Scholar
  8. 8.
    G.V.B. Lukasievicz, L.C. Malacarne, N.G.C. Astrath, V.S. Zanuto, L.S. Herculano, S.E. Bialkowski, A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat coupling fluids. Appl. Spectrosc. 66, 1461–1467 (2012)ADSCrossRefGoogle Scholar
  9. 9.
    O.S. Aretegui, P.Y.N. Poma, L.S. Herculano, G.V.B. Lukasievicz, F.B. Guimaraes, L.C. Malacarne, M.L. Baesso, S.E. Bialkowski, N.G.C. Astrath, Combined photothermal lens and photothermal mirror characterization of polymers. Appl. Spectrosc. 68, 777–783 (2014)ADSCrossRefGoogle Scholar
  10. 10.
    A. Marcano, G. Gwanmesia, M. King, D. Caballero, Determination of thermal diffusivity of opaque materials using the photothermal mirror method. Opt. Eng. 53, 127101 (2014). doi: 10.1117/1.OE.53.12.127101 ADSCrossRefGoogle Scholar
  11. 11.
    A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J. Opt. Soc. Am. B 23, 1408–1413 (2006)ADSCrossRefGoogle Scholar
  12. 12.
    A. Marcano, C. Loper, N. Melikechi, Pump probe mode mismatched Z-scan. J. Opt. Soc. Am. B 19, 119–124 (2002)ADSCrossRefGoogle Scholar
  13. 13.
    J. Shen, R.D. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992). doi: 10.1016/0301-0104(92)87053-C CrossRefGoogle Scholar
  14. 14.
    M.L. Baesso, J. Shen, R.D. Snook, Three dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time resolved measurements of thin-film spectra. J. Appl. Phys. 75, 3738–3748 (1994). doi: 10.1063/1.356045 ADSCrossRefGoogle Scholar
  15. 15.
    D.R. Lide (ed.), CRC handbook of chemistry and physics, 86th edn. (CRC Press, Boca Raton, 2005) ISBN 0-8493-0486-5Google Scholar
  16. 16.
    B.H.W.S. De Jong, R.G.C. Beerkens, P.A. van Nijnatten, Glass. Ullmann’s encyclopedia of industrial chemistry (2000). doi: 10.1002/14356007.a12_365 ISBN3-527-30673-0
  17. 17.
    R.H. Perry, D.W. Green (eds.), Perry’s chemical engineers’ handbook, 7th edn. (McGraw-Hill, New York, 1997). Table 1–4. ISBN 978-0-07-049841-9Google Scholar
  18. 18.
    Y. Takahashi, E.F. Westrum Jr., Glassy carbon low-temperature thermodynamic properties. J. Chem. Thermodyn. 2, 847–854 (1970)CrossRefGoogle Scholar
  19. 19.
  20. 20.
    C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014). doi: 10.4236/wjm.2014.43009 ADSCrossRefGoogle Scholar
  21. 21.
    G. Panneerselvam, R.V. Krishnan, M.P. Antony, K. Nagarajan, T. Vasudevan, P.R.V. Rao, Thermophysical measurements on dysprosium and gadolinium titanates. J. Nucl. Sci. 327, 220–225 (2004)ADSGoogle Scholar
  22. 22.
    V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods. J. Nucl. Sci. 281, 84–89 (2000)ADSGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Aristides Marcano
    • 1
    Email author
  • Gabriel Gwanmesia
    • 1
  • Bizenuh Workie
    • 1
  1. 1.Department of ChemistryDelaware State UniversityDoverUSA

Personalised recommendations