Photothermal Mirror Method for the Study of Thermal Diffusivity and Thermo-Elastic Properties of Opaque Solid Materials
- 135 Downloads
Abstract
We have carried out the theoretical and experimental time evolution and amplitude study of the photothermal mirror signal generated by focusing a laser beam on the surface of a suite of solid samples. Based on a theoretical model that resolves the thermal diffusivity equation and the equation for thermo-elastic deformations simultaneously, we have calculated the transient time evolution and amplitude of the signal. We observe the same time evolution pattern for samples as diverse as glass, quartz, metals, and synthetic ceramic oxides. The data have yielded a linear dependence between the time build-up of the thermal mirror and the inverse of the thermal diffusivity for all the samples. For moderate power levels, we also observe a linear behavior between the stationary value of the signal and the thermally induced phase shift value. From the calibration curves, we have determined the thermally induced phase and the thermal diffusivity coefficients of two prospective nuclear reactor control rod materials, dysprosium titanate (\(\hbox {Dy}_{2}\hbox {TiO}_{5}\)) and dysprosium dititanate (\(\hbox {Dy}_{2}\hbox {Ti}_{2}\hbox {O}_{7}\)) to be \(D = (7.0 \pm 0.4) \times 10^{-7} \mathrm{m^{2}\cdot s^{-1}}\).
Keywords
Photothermal effect Photothermal mirror method Photothermal properties of materials Thermal diffusivity of materialsNotes
Acknowledgements
The synthetic polycrystalline dysprosium specimens, used in this study, were hot-pressed using the large-volume, Kawai-type multi-anvil high-pressure apparatus in the High-Pressure laboratory at the Mineral Physics Institute (MPI), in the Geosciences Department at the Stony Brook University, in New York.
Compliance with Ethical Standards
Conflict of interest
The authors declare that there are not conflict of interest or bias in the present work.
References
- 1.P. Kuo, M. Munidasa, Single-beam interferometry of a thermal bump. Appl. Opt. 29, 5326–5331 (1990)ADSCrossRefGoogle Scholar
- 2.B.C. Li, Z. Zhen, S. He, Modulated photothermal deformation in solids. J. Phys. D Appl. Phys. 24, 2196–2201 (1991)ADSCrossRefGoogle Scholar
- 3.T. Elperin, G. Rudin, Thermal mirror method for measuring physical properties of multilayered coatings. Int. J. Thermophys. 28, 60–82 (2007)ADSCrossRefGoogle Scholar
- 4.N.G.C. Astrath, L.C. Malacarne, P.R.B. Pedreira, A.C. Bento, M.L. Baesso, J. Shen, Time-resolved thermal mirror for nanoscale surface displacement detection in low absorbing solids. Appl. Phys. Lett. 91, 191908 (2007)ADSCrossRefGoogle Scholar
- 5.F. Sato, L.C. Malacarne, P.R.B. Pedreira, M.P. Belancon, R.S. Mendes, M.L. Baesso, N.G.C. Astrath, J. Shen, Time-resolved thermal mirror method: a theoretical study. J. Appl. Phys. 104, 053520 (2008)ADSCrossRefGoogle Scholar
- 6.N.G.C. Astrath, L.C. Malacarne, V.S. Zanuto, M.P. Belancon, R.S. Mendes, M.L. Baesso, C. Jacinto, Finite-size effect on the surface deformation thermal mirror method. J. Opt. Soc. Am. B 28, 1735–1739 (2011)ADSCrossRefGoogle Scholar
- 7.L.C. Malacarne, N.G.C. Astrath, G.V.B. Lukasievicz, E.K. Lenzi, M.L. Baesso, S.E. Bialkowski, Time-resolved thermal lens and thermal mirror spectroscopy with sample-fluid heat coupling: a complete model for material characterization. Appl. Spectrosc. 65, 99–104 (2011)ADSCrossRefGoogle Scholar
- 8.G.V.B. Lukasievicz, L.C. Malacarne, N.G.C. Astrath, V.S. Zanuto, L.S. Herculano, S.E. Bialkowski, A theoretical and experimental study of time-resolved thermal mirror with non-absorbing heat coupling fluids. Appl. Spectrosc. 66, 1461–1467 (2012)ADSCrossRefGoogle Scholar
- 9.O.S. Aretegui, P.Y.N. Poma, L.S. Herculano, G.V.B. Lukasievicz, F.B. Guimaraes, L.C. Malacarne, M.L. Baesso, S.E. Bialkowski, N.G.C. Astrath, Combined photothermal lens and photothermal mirror characterization of polymers. Appl. Spectrosc. 68, 777–783 (2014)ADSCrossRefGoogle Scholar
- 10.A. Marcano, G. Gwanmesia, M. King, D. Caballero, Determination of thermal diffusivity of opaque materials using the photothermal mirror method. Opt. Eng. 53, 127101 (2014). doi: 10.1117/1.OE.53.12.127101 ADSCrossRefGoogle Scholar
- 11.A. Marcano, H. Cabrera, M. Guerra, R.A. Cruz, C. Jacinto, T. Catunda, Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement. J. Opt. Soc. Am. B 23, 1408–1413 (2006)ADSCrossRefGoogle Scholar
- 12.A. Marcano, C. Loper, N. Melikechi, Pump probe mode mismatched Z-scan. J. Opt. Soc. Am. B 19, 119–124 (2002)ADSCrossRefGoogle Scholar
- 13.J. Shen, R.D. Lowe, R.D. Snook, A model for cw laser induced mode-mismatched dual-beam thermal lens spectrometry. Chem. Phys. 165, 385–396 (1992). doi: 10.1016/0301-0104(92)87053-C CrossRefGoogle Scholar
- 14.M.L. Baesso, J. Shen, R.D. Snook, Three dimensional model for cw laser-induced mode-mismatched dual-beam thermal lens spectrometry and time resolved measurements of thin-film spectra. J. Appl. Phys. 75, 3738–3748 (1994). doi: 10.1063/1.356045 ADSCrossRefGoogle Scholar
- 15.D.R. Lide (ed.), CRC handbook of chemistry and physics, 86th edn. (CRC Press, Boca Raton, 2005) ISBN 0-8493-0486-5Google Scholar
- 16.B.H.W.S. De Jong, R.G.C. Beerkens, P.A. van Nijnatten, Glass. Ullmann’s encyclopedia of industrial chemistry (2000). doi: 10.1002/14356007.a12_365 ISBN3-527-30673-0
- 17.R.H. Perry, D.W. Green (eds.), Perry’s chemical engineers’ handbook, 7th edn. (McGraw-Hill, New York, 1997). Table 1–4. ISBN 978-0-07-049841-9Google Scholar
- 18.Y. Takahashi, E.F. Westrum Jr., Glassy carbon low-temperature thermodynamic properties. J. Chem. Thermodyn. 2, 847–854 (1970)CrossRefGoogle Scholar
- 19.
- 20.C. Garion, Mechanical properties for reliability analysis of structures in glassy carbon. World J. Mech. 4, 79–89 (2014). doi: 10.4236/wjm.2014.43009 ADSCrossRefGoogle Scholar
- 21.G. Panneerselvam, R.V. Krishnan, M.P. Antony, K. Nagarajan, T. Vasudevan, P.R.V. Rao, Thermophysical measurements on dysprosium and gadolinium titanates. J. Nucl. Sci. 327, 220–225 (2004)ADSGoogle Scholar
- 22.V.D. Risovany, E.E. Varlashova, D.N. Suslov, Dysprosium titanate as an absorber material for control rods. J. Nucl. Sci. 281, 84–89 (2000)ADSGoogle Scholar