Measurement on the Thermal Properties of Graphene Powder

  • Wenchan Zhang
  • Hua DongEmail author
  • Yongchun Wang
  • Jingkui Zhang


We report on an in-plane thermal diffusivity study of suspended graphene powder (GP) measured by the transient electro-thermal (TET) technique. The GP with a density of 0.24 \(\hbox {g}\,\cdot \,\hbox {cm}^{-3}\) is made up of five–six-layer graphene. And the average size of graphene flakes used in our study is 0.98 \(\upmu \)m. The intrinsic thermal conductivity perpendicular to in-plane of GP is determined at 18.8 \(\hbox {W}\,\cdot \,(\hbox {m}\,\cdot \,\hbox {K})^{-1}\) using the thermal conductivity instrument, and the range of the in-plane thermal diffusivity of GP is identified from \(0.86\times 10^{-5 }\,\hbox {m}^{2 }\,\cdot \,\hbox {s}^{-1}\) to \(1.52\times 10^{-5 }\,\hbox {m}^{2}\,\cdot \,\hbox {s}^{-1}\) measured by the TET technique. Accordingly, the corresponding intrinsic thermal conductivity is 13.5 \(\hbox {W}\,\cdot \,(\hbox {m}\,\cdot \,\hbox {K})^{-1}\)–23.8 \(\hbox {W}\,\cdot \,(\hbox {m}\,\cdot \,\hbox {K})^{-1}\). It is obvious that the two methods used in the experimental research on the intrinsic thermal conductivity of GP in different directions are not only the same order of magnitude but also have a maximum difference of only 5 \(\hbox {W}\,\cdot \,(\hbox {m}\,\cdot \,\hbox {K})^{-1}\). The results of our experiments are about one order of magnitude lower than those reported for four–five-layer graphene. There are various porosities in the whole sample after the compaction steps in the preparation of the samples, which gives rise to a large thermal contact resistance. And widely uneven surface defects observed under an optical microscope for the studied GP lead to substantial phonon scattering. Those factors combine together to give the observed significant reduction in the thermal conductivity.


Graphene powder Thermal conductivity Thermal diffusivity Transient electro-thermal technique 



Support of this work from the National Natural Science Foundation of China (Nos. 51506106 and 11402180) are Gratefully acknowledged.


  1. 1.
    Y. Zhang, Y.-W. Tan, H.L. Stormer, P. Kim, Nature 438, 201 (2005)ADSCrossRefGoogle Scholar
  2. 2.
    A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, Nano Lett. 8, 902 (2008)ADSCrossRefGoogle Scholar
  3. 3.
    C. Lee, X. Wei, J.W. Kysar, J. Hone, Science 321, 385 (2008)ADSCrossRefGoogle Scholar
  4. 4.
    M.D. Stoller, S. Park, Y. Zhu, J. An, R.S. Ruoff, Nano Lett. 8, 3498 (2008)ADSCrossRefGoogle Scholar
  5. 5.
    K.S. Kim, Y. Zhao, H. Jang, S.Y. Lee, J.M. Kim, K.S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, B.H. Hong, Nature 457, 706 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    Cockrell School of Engineering. Graphene, “Wonder” material for nanoelectronics, passes critical test. Internet, Accessed 8 April 2010
  7. 7.
    M. Freitag, M. Steiner, Y. Martin, V. Perebeinos, Z. Chen, J.C. Tsang, P. Avouris, Nano Lett. 9, 1883 (2009)ADSCrossRefGoogle Scholar
  8. 8.
    H. Rho, S. Lee, S. Bae, D.S. Lee, H.J. Lee, J.Y. Hwang, T. Jeong, S. Kim, T.-W. Kim, J.-S. Ha, Sci. Rep. 5, 12710 (2015)ADSCrossRefGoogle Scholar
  9. 9.
    Y. Huang, X. Dong, Y. Liu, L.-J. Li, P. Chen, J. Mater. Chem. 21, 12358 (2011)CrossRefGoogle Scholar
  10. 10.
    S. Ghosh, D. Nika, E. Pokatilov, A. Balandin, NJPh 11, 095012 (2009)ADSCrossRefGoogle Scholar
  11. 11.
    S.D. Park, S.W. Lee, S. Kang, I.C. Bang, J.H. Kim, H.S. Shin, D.W. Lee, D.W. Lee, Appl. Phys. Lett. 97, 023103 (2010)ADSCrossRefGoogle Scholar
  12. 12.
    Z. Yan, G. Liu, J.M. Khan, A.A. Balandin, Nat. Commun. 3, 827 (2012)ADSCrossRefGoogle Scholar
  13. 13.
    X. Fang, L.-W. Fan, Q. Ding, X. Wang, X.-L. Yao, J.-F. Hou, Z.-T. Yu, G.-H. Cheng, Y.-C. Hu, K.-F. Cen, Energy Fuels 27, 4041 (2013)CrossRefGoogle Scholar
  14. 14.
    K. Jagannadham, Metall. Mater. Trans. B. 43, 316 (2012)CrossRefGoogle Scholar
  15. 15.
    S.S. Gupta, V.M. Siva, S. Krishnan, T. Sreeprasad, P.K. Singh, T. Pradeep, S.K. Das, J. Appl. Phys. 110, 084302 (2011)ADSCrossRefGoogle Scholar
  16. 16.
    H. Yuan, N. Mei, Energy Convers. Manag. 101, 216 (2015)CrossRefGoogle Scholar
  17. 17.
    W. Yu, H. Xie, X. Wang, X. Wang, Phys. Lett. A. 375, 1323 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    V. Goyal, A.A. Balandin, Appl. Phys. Lett. 100, 073113 (2012)ADSCrossRefGoogle Scholar
  19. 19.
    Z. Wang, R. Xie, C.T. Bui, D. Liu, X. Ni, B. Li, J.T. Thong, Nano Lett. 11, 113 (2010)ADSCrossRefGoogle Scholar
  20. 20.
    S. Ghosh, I. Calizo, D. Teweldebrhan, E. Pokatilov, D. Nika, A. Balandin, W. Bao, F. Miao, C.N. Lau, Appl. Phys. Lett. 92, 151911 (2008)ADSCrossRefGoogle Scholar
  21. 21.
    L. Lindsay, D. Broido, N. Mingo, PhRvB 83, 235428 (2011)ADSGoogle Scholar
  22. 22.
    J. Hu, X. Ruan, Y.P. Chen, Nano Lett. 9, 2730 (2009)ADSCrossRefGoogle Scholar
  23. 23.
    J.D. Renteria, S. Ramirez, H. Malekpour, B. Alonso, A. Centeno, A. Zurutuza, A.I. Cocemasov, D.L. Nika, A.A. Balandin, Adv. Funct. Mater. 25, 4664 (2015)CrossRefGoogle Scholar
  24. 24.
    J. Renteria, D. Nika, A. Balandin, Appl. Sci. 4, 525 (2014)CrossRefGoogle Scholar
  25. 25.
    W. Jang, Z. Chen, W. Bao, C.N. Lau, C. Dames, Nano Lett. 10, 3909 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    J. Lan, J.-S. Wang, C.K. Gan, S.K. Chin, PhRvB 79, 115401 (2009)ADSGoogle Scholar
  27. 27.
    H. Malekpour, K.H. Chang, J.C. Chen, C.Y. Lu, D.L. Nika, K.S. Novoselov, A.A. Balandin, Nano Lett. 14, 5155 (2014)ADSCrossRefGoogle Scholar
  28. 28.
    Y. Zhu, S. Murali, M.D. Stoller, K. Ganesh, W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, Science 332, 1537 (2011)ADSCrossRefGoogle Scholar
  29. 29.
    M. Zhang, M. Jia, Y. Jin, Appl. Surf. Sci. 261, 298 (2012)ADSCrossRefGoogle Scholar
  30. 30.
    B.F. Machado, P. Serp, Sci. Technol. 2, 54 (2012)Google Scholar
  31. 31.
    S. Bai, X. Shen, RSC Adv. 2, 64 (2012)CrossRefGoogle Scholar
  32. 32.
    D.K. James, J.M. Tour, Acc. Chem. Res. 46, 2307 (2012)CrossRefGoogle Scholar
  33. 33.
    Cnpowdernet of China. The first pure graphene thermal film was producted in Guizhou. Internet, Accessed 7 April 2013
  34. 34.
    G. Liu, S. Xu, T.T. Cao, H. Lin, X. Tang, Y.Q. Zhang, X. Wang, Biopolymers 101, 1029 (2014)CrossRefGoogle Scholar
  35. 35.
    H. Lin, S. Xu, Y.Q. Zhang, X. Wang, A.C.S. Appl, Mater. Interfaces 6, 11341 (2014)CrossRefGoogle Scholar
  36. 36.
    H. Lin, S. Xu, X. Wang, N. Mei, Nanotechnology 24, 415706 (2013)CrossRefGoogle Scholar
  37. 37.
    J. Guo, X. Wang, T. Wang, J. Appl. Phys. 101, 063537 (2007)ADSCrossRefGoogle Scholar
  38. 38.
    Z. Xu, X. Wang, H. Xie, Polymer 55, 6373 (2014)CrossRefGoogle Scholar
  39. 39.
    J.V. Beck, K.D. Cole, A. Haji-Sheikh, B. Litkouhi, Heat Conduction Using Green’s Functions (Hemisphere, New York, 1992)zbMATHGoogle Scholar
  40. 40.
    G. Liu, H. Lin, X. Tang, K. Bergler, X. Wang, JoVE 83, e51144 (2014)Google Scholar
  41. 41.
    F.P. Incropera, Fundamentals of Heat and Mass Transfer, 6th edn. (Wiley, Hoboken, 2007)Google Scholar
  42. 42.
    Z. Wei, Z. Ni, K. Bi, M. Chen, Y. Chen, Carbon 49, 2653 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Environmental and Municipal EngineeringQingdao University of Technology QingdaoQingdaoPeople’s Republic of China

Personalised recommendations