Advertisement

Radiative Properties of Ceramic \(\hbox {Al}_{2}\hbox {O}_{3}\), AlN and \(\hbox {Si}_{3}\hbox {N}_{4}\)—II: Modeling

  • Peiyan Yang
  • Qiang Cheng
  • Zhuomin ZhangEmail author
Article

Abstract

In Part I of this study (Cheng et al. in Int J Thermophys 37: 62, 2016), the reflectance and transmittance of dense ceramic plates were measured at wavelengths from 0.4 \(\upmu \hbox {m}\) to about 20 \(\upmu \hbox {m}\). The samples of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN are semitransparent in the wavelength region from 0.4 \(\upmu \hbox {m}\) to about 7 \(\upmu \hbox {m}\), where volume scattering dominates the absorption and scattering behaviors. On the other hand, the \(\hbox {Si}_{3}\hbox {N}_{4}\) plate is opaque in the whole wavelength region. In the mid-infrared region, all samples show phonon vibration bands and surface reflection appears to be strong. The present study focuses on modeling the radiative properties and uses an inverse method to obtain the scattering and absorption coefficients of \(\hbox {Al}_{2}\hbox {O}_{3}\) and AlN in the semitransparent region from the measured directional-hemispherical reflectance and transmittance. The scattering coefficient is also predicted using Mie theory for comparison. The Lorentz oscillator model is applied to fit the reflectance spectra of AlN and \(\hbox {Si}_{3}\hbox {N}_{4}\) from 1.6 \(\upmu \hbox {m}\) to 20 \(\upmu \hbox {m}\) in order to obtain their optical constants. It is found that the phonon modes for \(\hbox {Si}_{3}\hbox {N}_{4}\) are much stronger in the polycrystalline sample studied here than in amorphous films reported previously.

Keywords

Ceramics Optical constants Radiative properties Volume scattering 

Notes

Acknowledgements

This study was mainly supported by the US National Science Foundation (CBET-1603761). Q. Cheng would also like to thank the National Natural Science Foundation of China (No. 51676077) and the Foundation of State Key Laboratory of Coal Combustion (FSKLCCB1601) for the sponsorship.

References

  1. 1.
    Q. Cheng, P. Yang, Z.M. Zhang, Int. J. Thermophys. 37, 62 (2016)ADSCrossRefGoogle Scholar
  2. 2.
    A.S. Barker, Phys. Rev. 132, 1474 (1963)ADSCrossRefGoogle Scholar
  3. 3.
    P.J. Zanzucchi, M.T. Duffy, R.C. Alig, J. Electrochem. Soc. 125, 299 (1978)CrossRefGoogle Scholar
  4. 4.
    T.S. Eriksson, A. Hjortsberg, G.A. Niklasson, C.G. Granqvist, Appl. Opt. 20, 2742 (1981)ADSCrossRefGoogle Scholar
  5. 5.
    C.A. Worrell, J. Mater. Sci. 21, 781 (1986)ADSCrossRefGoogle Scholar
  6. 6.
    O. Rozenbaum, D.D.S. Meneses, Y. Auger, S. Chermanne, P. Echegut, Rev. Sci. Instrum. 70, 4020 (1999)ADSCrossRefGoogle Scholar
  7. 7.
    T.R. Fu, J.Q. Tang, K. Chen, F. Zhang, Appl. Opt. 55, 705 (2016)ADSCrossRefGoogle Scholar
  8. 8.
    B.-N. Kim, K. Hiraga, K. Morita, H. Yoshida, T. Miyazaki, Y. Kagawa, Acta Mater. 57, 1319 (2009)CrossRefGoogle Scholar
  9. 9.
    J. Manara, R. Caps, F. Raether, J. Fricke, Opt. Commun. 168, 237 (1999)ADSCrossRefGoogle Scholar
  10. 10.
    B. Bouvry, L. del Campo, D. De Sousa Meneses, O. Rozenbaum, R. Echegut, D. Lechevalier, M. Gaubil, P. Echegut, J. Phys. Chem. C 120, 3267 (2016)CrossRefGoogle Scholar
  11. 11.
    J.G.J. Peelen, R. Metselaar, J. Appl. Phys. 45, 216 (1974)ADSCrossRefGoogle Scholar
  12. 12.
    R. Apetz, M.P.B. van Bruggen, J. Am. Ceram. Soc. 86, 480 (2003)CrossRefGoogle Scholar
  13. 13.
    Q. Guo, M. Nishio, H. Ogawa, A. Yoshida, Phys. Rev. B 55, R15987 (1997)ADSCrossRefGoogle Scholar
  14. 14.
    W. Moore, J. Freitas Jr., R. Holm, O. Kovalenkov, V. Dmitriev, Appl. Phys. Lett. 86(14), 141912 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    C. Ristoscu, C. Ducu, G. Socol, F. Craciunoiu, I.N. Mihailescu, Appl. Surf. Sci. 248, 411 (2005)ADSCrossRefGoogle Scholar
  16. 16.
    H. Hobert, H.H. Dunken, J. Meinschien, H. Stafast, Vib. Spectrosc. 19, 205 (1999)CrossRefGoogle Scholar
  17. 17.
    J. Kischkat, S. Peters, B. Gruska, M. Semtsiv, M. Chashnikova, M. Klinkmüller, O. Fedosenko, S. Machulik, A. Aleksandrova, G. Monastyrskyi, Y. Flores, W. Ted Masselink, Appl. Opt. 51, 6789 (2012)ADSCrossRefGoogle Scholar
  18. 18.
    M. Gadenne, J. Plon, P. Gadenne, Thin Solid Films 333, 251 (1998)ADSCrossRefGoogle Scholar
  19. 19.
    M. Strassburg, J. Senawiratne, N. Dietz, U. Haboeck, A. Hoffmann, V. Noveski, R. Dalmau, R. Schlesser, Z. Sitar, J. Appl. Phys. 96, 5870 (2004)ADSCrossRefGoogle Scholar
  20. 20.
    A.T. Collins, E.C. Lightowlers, P.J. Dean, Phys. Rev. 158, 833 (1967)ADSCrossRefGoogle Scholar
  21. 21.
    D.J. Jones, R.H. French, H. Müllejans, S. Loughin, A.D. Dorneich, P.F. Carcia, J. Mater. Res. 14, 4337 (1999)ADSCrossRefGoogle Scholar
  22. 22.
    T. Chartier, E. Streicher, P. Boch, J. Eur. Ceram. Soc. 9, 231 (1992)CrossRefGoogle Scholar
  23. 23.
    M. Descamps, G. Moreau, M. Mascart, B. Thierry, J. Eur. Ceram. Soc. 13, 221 (1994)CrossRefGoogle Scholar
  24. 24.
    S.N. Ivanov, P.A. Popov, G.V. Egorov, A.A. Sidorov, B.I. Kornev, L.M. Zhukova, V.P. Ryabov, Phys. Solid State 39, 81 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    M. Omori, Mater. Sci. Eng. A 287, 183 (2000)CrossRefGoogle Scholar
  26. 26.
    Y. Xiong, Z.Y. Fu, H. Wang, Y.C. Wang, Q.J. Zhang, Mater. Sci. Eng. B 123, 57 (2005)CrossRefGoogle Scholar
  27. 27.
    K.A. Khor, K.H. Cheng, L.G. Yu, F. Boey, Mater. Sci. Eng. A 347, 300 (2003)CrossRefGoogle Scholar
  28. 28.
    L. Qiao, H. Zhou, C. Li, Mater. Sci. Eng. B 99, 102 (2003)CrossRefGoogle Scholar
  29. 29.
    H.R. Philipp, J. Electrochem. Soc. 120, 295 (1973)CrossRefGoogle Scholar
  30. 30.
    G. Cataldo, J.A. Beall, H.-M. Cho, B. McAndrew, M.D. Niemack, E.J. Wollack, Opt. Lett. 37, 4200 (2012)ADSCrossRefGoogle Scholar
  31. 31.
    M.F. Lambrinos, R. Valizadeh, J.S. Colligon, Appl. Opt. 35, 3620 (1996)ADSCrossRefGoogle Scholar
  32. 32.
    G. Xu, P. Jin, M. Tazawa, K. Yoshimura, Thin Solid Films 425, 196 (2003)ADSCrossRefGoogle Scholar
  33. 33.
    S.V. Deshpande, E. Gulari, S.W. Brown, S.C. Rand, J. Appl. Phys. 77, 6534 (1995)ADSCrossRefGoogle Scholar
  34. 34.
    E.A. Taft, J. Electrochem. Soc. 118, 1341 (1971)CrossRefGoogle Scholar
  35. 35.
    F.L. Riley, J. Am. Ceram. Soc. 83, 245 (2000)CrossRefGoogle Scholar
  36. 36.
    S.A. Prahl, M.J.C. van Gemert, A.J. Welch, Appl. Opt. 32, 559 (1993)ADSCrossRefGoogle Scholar
  37. 37.
    Q. Li, B.J. Lee, Z.M. Zhang, D.W. Allen, J. Biomed. Opt. 13, 054064 (2008)ADSCrossRefGoogle Scholar
  38. 38.
    J.R. Howell, R. Siegel, M.P. Mengüç, Thermal Radiation Heat Transfer, 5th edn. (CRC Press Inc., Boca Raton, 2010)CrossRefGoogle Scholar
  39. 39.
    C.F. Bohren, D.R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 2008)Google Scholar
  40. 40.
    Z.M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007)Google Scholar
  41. 41.
    J.I. Watjen, T.J. Bright, Z.M. Zhang, C. Muratore, A.A. Voevodin, Int. J. Heat Mass Transfer 61, 106 (2013)CrossRefGoogle Scholar
  42. 42.
    T.J. Bright, J.I. Watjen, Z.M. Zhang, C. Muratore, A.A. Voevodin, Thin Solid Films 520, 6793 (2012)ADSCrossRefGoogle Scholar
  43. 43.
    F. Gervais, in Handbook of Optical Constants of Solids, vol. 2, ed. by E.D. Palik (Academic Press, San Diego, CA, 1998), pp. 761–775Google Scholar
  44. 44.
    H. Sato, J. Phys. Earth 25, 27 (1977)CrossRefGoogle Scholar
  45. 45.
    I.W. Sudiarta, P. Chylek, J. Opt. Soc. Am. A 18, 1275 (2001)ADSCrossRefGoogle Scholar
  46. 46.
    W.J. Tropf, M.E. Thomas, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, CA, 1998), pp. 653–681Google Scholar
  47. 47.
    M. Kazan, B. Rufflé, Ch. Zgheib, P. Masri, Diamond Relat. Mater. 15, 1525 (2006)ADSCrossRefGoogle Scholar
  48. 48.
    S. Loughin, R.H. French, in Handbook of Optical Constants of Solids, vol. 3, ed. by E.D. Palik (Academic Press, San Diego, CA, 1998), pp. 373–401Google Scholar
  49. 49.
    J.M. Khoshman, M.E. Kordesch, J. Non-Crystall, Solids 351, 3334 (2005)Google Scholar
  50. 50.
    Z.M. Zhang, B.I. Choi, M.I. Flik, A.C. Anderson, J. Opt. Soc. Am. B 11, 2252 (1994)ADSCrossRefGoogle Scholar
  51. 51.
    M. Klanjšek Gunde, M. Maček, Phys. Status Solidi A 183, 439 (2001)ADSCrossRefGoogle Scholar
  52. 52.
    N. Wade, S.A. Solin, J. Wong, S. Prochazka, J. Non-Crystal, Solids 43, 7 (1981)Google Scholar
  53. 53.
    Y.Q. Cai, L.T. Zhang, Q.F. Zeng, L.F. Cheng, Y.D. Xu, Phys. Rev. B 74, 174301 (2006)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.George W. Woodruff School of Mechanical EngineeringGeorgia Institute of TechnologyAtlantaUSA
  2. 2.State Key Laboratory of Coal Combustion, School of Energy and Power EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations