Thermal Properties of Jojoba Oil Between \(20\,{^{\circ }}\hbox {C}\) and \(45\,{^{\circ }}\hbox {C}\)

  • G. Lara-Hernández
  • J. J. A. Flores-CuautleEmail author
  • C. Hernandez-Aguilar
  • E. Suaste-Gómez
  • A. Cruz-Orea
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


Vegetable oils have been widely studied as biofuel candidates. Among these oils, jojoba (Simmondsia chinensis) oil has attracted interest because it is composed almost entirely of wax esters that are liquid at room temperature. Consequently, it is widely used in the cosmetic and pharmaceutical industries. To date, research on S. chinensis oil has focused on to its use as a fuel and its thermal stability, and information about its thermal properties is scarce. In the present study, the thermal effusivity and conductivity of jojoba oil between \(20\,{^{\circ }}\hbox {C}\) and \(45\,{^{\circ }}\hbox {C}\) were obtained using the inverse photopyroelectric and hot-ball techniques. The feasibility of an inverse photopyroelectric method and a hot-ball technique to monitor the thermal conductivity, and the thermal effusivity of the S. chinensis is demonstrated. The thermal effusivity decreased from 538 \(\hbox {W}\cdot \,\hbox {s}^{1/2}\cdot \,\hbox {m}^{-2}\cdot \,\hbox {K}^{-1}\) to 378 \(\hbox {W}\cdot \,\hbox {s}^{1/2}\cdot \,\hbox {m}^{-2}\cdot \,\hbox {K}^{-1}\) as the temperature increased, whereas the thermal conductivity remained the same over the temperature range investigated in this study. The obtained results provide insight into the thermal properties of S. chinensis oil between \(20\,{^{\circ }}\hbox {C}\) and \(45\,{^{\circ }}\hbox {C}\).


Jojoba oil Simmondsia chinensis Thermal conductivity Thermal effusivity 



A. Cruz-Orea and J.J.A. Flores-Cuautle are grateful for partial financial support from CONACYT (Grant No. 241330). We are also grateful to Eng. E. Ayala of Physics Department CINVESTAV and J.J. Hernandez Pino of ITO-Orizaba for their technical support, and T. Munro of Brigham Young University.


  1. 1.
    F. Ma, L.D. Clements, M.A. Hanna, Bioresour. Technol. 69, 289 (1999)CrossRefGoogle Scholar
  2. 2.
    N. Martini, J.S. Schell, Plant Oils as Fuels: Present State of Science and Future Developments (Springer, New York, 2012)Google Scholar
  3. 3.
    A.C. Pinto, L.L.N. Guarieiro, M.J.C. Rezende, N.M. Ribeiro, E.A. Torres, W.A. Lopes, PAdP Pereira, JBd Andrade, J. Braz. Chem. Soc. 16, 1313 (2005)CrossRefGoogle Scholar
  4. 4.
    A. Demirbas, Fuel 87, 1743 (2008)CrossRefGoogle Scholar
  5. 5.
    T. Oliphant, F. Chandler, R. Harper, J. Am. Acad. Dermatol. 68, AB37 (2013)Google Scholar
  6. 6.
    A.E. Edris, Phytother. Res. 21, 308 (2007)CrossRefGoogle Scholar
  7. 7.
    M.I. Al-Widyan, MtA Al-Muhtaseb, Energy Convers. Manag. 51, 1702 (2010)CrossRefGoogle Scholar
  8. 8.
    Z. Al-Hamamre, K.M. Rawajfeh, Int. J. Green. Energy 12, 398 (2013)CrossRefGoogle Scholar
  9. 9.
    I.M. Atadashi, M.K. Aroua, A.A. Aziz, Renew. Sustain. Energy Rev. 14, 1999 (2010)CrossRefGoogle Scholar
  10. 10.
    S.A. Basha, K.R. Gopal, S. Jebaraj, Renew. Sustain. Energy Rev. 13, 1628 (2009)CrossRefGoogle Scholar
  11. 11.
    R.P.S. Bisht, G.A. Sivasankaran, V.K. Bhatia, Wear 161, 193 (1993)CrossRefGoogle Scholar
  12. 12.
    A.J. Verbiscar, T.F. Banigan, J. Agric. Food Chem. 26, 1456 (1978)CrossRefGoogle Scholar
  13. 13.
    M.F. Gayol, D.O. Labuckas, J.C. Oberti, C.A. Guzmán, An. Asoc. Quím. Argent. 92, 59 (2004)Google Scholar
  14. 14.
    D.J. Sessa, J. Sci. Food Agric. 72, 295 (1996)CrossRefGoogle Scholar
  15. 15.
    D. Sessa, T. Nelsen, R. Kleiman, J. Arquette, J. Am. Oil Chem. Soc. 73, 271 (1996)CrossRefGoogle Scholar
  16. 16.
    Z. Al-Hamamre, A. Al-Salaymeh, Fuel 123, 175 (2014)CrossRefGoogle Scholar
  17. 17.
    E. Slenders, In Departement Natuurkunde & Sterrenkunde, (KATHOLIEKE UNIVERSITEIT LEUVEN, 2013)Google Scholar
  18. 18.
    P.C. Menon, R.N. Rajesh, C. Glorieux, Rev. Sci. Instrum. 80, 054904 (2009)ADSCrossRefGoogle Scholar
  19. 19.
    A. Cruz-Orea, E.H. Bentefour, P. Jamée, M. Chirtoc, C. Glorieux, G. Pitsi, J. Thoen, Rev. Sci. Instrum. 74, 818 (2003)ADSCrossRefGoogle Scholar
  20. 20.
    J. Caerels, C. Glorieux, J. Thoen, Rev. Sci. Instrum. 69, 2452 (1998)ADSCrossRefGoogle Scholar
  21. 21.
    Lu Kubičár, V. Vretenár, V. Štofanik, V. Boháč, Int. J. Thermophys. 31, 1904 (2010)ADSCrossRefGoogle Scholar
  22. 22.
    M. Kouyaté, J.J.A. Flores-Cuautle, E. Slenders, J. Sermeus, B. Verstraeten, B.M.L.Garay Ramirez, E.San Martin Martinez, L. Kubicar, V. Vretenar, J. Hudec, C. Glorieux, Int. J. Thermophys. 36, 3211 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    X. Xu, J.J.A. Flores Cuautle, M. Kouyate, N.B. Roozen, J. Goossens, P. Menon, M.Malayil Kuriakose, R. Salenbien, R. Rajesh Nair, C. Glorieux, P. Griesmar, L. Martinez, S. Serfaty, J. Phys. D Appl. Phys. 49, 085502 (2016)ADSCrossRefGoogle Scholar
  24. 24.
    L.M. Cervantes-Espinosa, Fd Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, J.P. Valcárcel, A. García-Quiroz, Int. J. Thermophys. 33, 1916 (2012)ADSCrossRefGoogle Scholar
  25. 25.
    J.J.A. Flores Cuautle, R. Gonzalez Ballesteros, A. Cruz Orea, E. Suaste Gomez, in International Materials Research, (Cancun, Mexico, 2008)Google Scholar
  26. 26.
    D.D. Jackson, J. Geophys. Res. 81, 1027 (1976)ADSCrossRefGoogle Scholar
  27. 27.
    L.M. Cervantes-Espinosa, F.L. Castillo-Alvarado, G. Lara-Hernández, A. Cruz-Orea, C. Hernández-Aguilar, A. Domínguez-Pacheco, Int. J. Thermophys. 35, 1940 (2013)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Section of Graduate Studies and Research ESIME-IPNU.P.A.L.M.Ciudad de MexicoMexico
  2. 2.CONACYT, Division of Graduate Studies and ResearchOrizaba Institute of TechnologyOrizabaMexico
  3. 3.Electrical Engineering DepartmentCINVESTAV-IPNCiudad de MexicoMexico
  4. 4.Physics DepartmentCINVESTAV-IPNCiudad de MexicoMexico

Personalised recommendations