Elastic Evaluation of Poly(Lactic Acid) Electrospun Membranes Using the Pulsed Photoacoustic Technique
- 161 Downloads
Abstract
Fibrous membranes manufactured by electrospinning possess unique features such as a high porosity and large specific surface area, making them suitable for applications in tissue engineering. However, the determination of their mechanical behavior under different loading conditions remains one of the most difficult technical problems for researchers to overcome. While the tensile properties of this kind of membrane are commonly reported in the literature, few explorations of their properties in other directions have been reported. In this paper, the pulsed photoacoustic technique is employed to obtain the elastic constants of electrospun non-woven membranes, specifically in two directions (L, T). The electrospun samples are hybrid fiber membranes of poly(lactic acid) and hydroxyapatite (HA) nanoparticles at different concentrations. It is found that the concentration of HA nanoparticles determines the mechanical response of the membrane, where the nanoparticles act either as a reinforcement or as a mesh defect. The elastic constants (\(E_{L}, E_{T}, G_{L}, G_{T}, v_{L}\), \(\nu _{T}\)) are obtained through velocity waves related to the stress–strain equations, using samples with two different geometries and considering the electrospinning mats as a transversely isotropic material. These values are compared to those acquired using macro-tensile testing equipment according to the ASTM D1708 standard.
Graphical Abstract
Keywords
Electrospinning Electrospun composites Fiber membranes Mechanical properties PLA–hydroxyapatite Pulsed photoacoustic techniqueNotes
Acknowledgements
This work was supported by DGAPA-PAPIIT-UNAM under Grants IN106515, IN105117 and IN108116 as well by II-UNAM under Grant 6593.
References
- 1.L.S. Nair, C.T. Laurencin, Prog. Polym. Sci. 32, 762 (2007)CrossRefGoogle Scholar
- 2.M. Yao, H. Deng, F. Mai, K. Wang, Q. Zhang, F. Chen, Q. Fu, Express Polym. Lett. 5, 937 (2011)CrossRefGoogle Scholar
- 3.B. Gupta, N. Revagade, J. Hilborn, Prog. Polym. Sci. 32, 455 (2007)CrossRefGoogle Scholar
- 4.V. Beachley, X. Wen, Prog. Polym. Sci. 35, 868 (2010)CrossRefGoogle Scholar
- 5.H. Zheng-Ming, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, Compos. Sci. Technol. 63, 2223 (2003)CrossRefGoogle Scholar
- 6.J. Zeleny, Phys. Rev. 10, 1 (1917)ADSCrossRefGoogle Scholar
- 7.C. Wang, H.S. Chien, K.W. Yan, C.L. Hung, K.L. Hung, S.J. Tsai, Polymer 50, 6100 (2009)CrossRefGoogle Scholar
- 8.P.P. Molamma, J. Venugopal, S. Ramakrishna, Acta Biomater. 5, 2884 (2009)CrossRefGoogle Scholar
- 9.G. Sui, X. Yang, F. Mei, X. Hu, G. Chen, X. Deng, S. Ryu, J. Biomed. Mater. Res. A 82, 445 (2006)Google Scholar
- 10.J.H. Chang, Y.U. An, D. Cho, E.P. Ginnelis, Polymer 44, 3715 (2003)CrossRefGoogle Scholar
- 11.C.L. Pai, M.C. Boyse, G.C. Rutledge, Polymer 52, 2295 (2011)CrossRefGoogle Scholar
- 12.F. Croisier, A.-S. Duwez, C. Jérome, A.F. Leonard, K.O. van der Werf, P.J. Dijkstra, M.L. Bennink, Acta Biomater. 8, 218 (2012)CrossRefGoogle Scholar
- 13.J.J. Liao, T.-B. Hu, C.-W. Chang, Int. J. Rock Mech. Min. Sci. 34, 1045 (1997)CrossRefGoogle Scholar
- 14.T.D. Rossing, D.A. Russell, Am. J. Phys. 58, 1153 (1990)ADSCrossRefGoogle Scholar
- 15.M. Navarrete, M. Villagrán, Rev. Sci. Instrum. 74, 479 (2003)ADSCrossRefGoogle Scholar
- 16.M. Navarrete, R. Vera-Graziano, J. Pineda, J. Appl. Polym. Sci. 111, 1199 (2009)CrossRefGoogle Scholar
- 17.M. Navarrete, F. Serranía, M. Villagrán, J. Bravo, R. Guinovart, R. Rodríguez, Mech. Adv. Mater. Struct. 9, 157 (2002)CrossRefGoogle Scholar
- 18.E.H. Kerner, Proc. Phys. Soc. B 69, 808 (1956)ADSCrossRefGoogle Scholar
- 19.W.M. Madigosky, R.W. Harrison, K.P. Scharnhorst, Polym. Mater. Sci. Eng. 60, 489 (1989)Google Scholar
- 20.R.L. Kligman, W.M. Madigosky, J.R. Barlow, J. Acoust. Soc. Am. 70, 1437 (1981)ADSCrossRefGoogle Scholar
- 21.C.B. Scruby, L.E. Drain, in Laser Ultrasonics: Techniques and Applications, ed. by C.B. Scruby, L.E Drain (Hilger, Neew York, 1990)Google Scholar
- 22.ASTM D1708-10, Standard test method for tensile properties of plastics by use of microtensile specimen. ASTM 08.01 Plastics (I): D256–D3159 (2011)Google Scholar