Advertisement

Comparative Study of Two InGaAs-Based Reference Radiation Thermometers

  • H. NasibovEmail author
  • A. Diril
  • O. Pehlivan
  • M. Kalemci
TEMPMEKO 2016
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science

Abstract

More than one decade ago, an InGaAs detector-based transfer standard infrared radiation thermometer working in the temperature range from \(150\,{^{\circ }}\hbox {C}\) to \(1100\,{^{\circ }}\hbox {C}\) was built at TUBITAK UME in the scope of collaboration with IMGC (INRIM since 2006). During this timescale, the radiation thermometer was used for the dissemination of the radiation temperature scale below the silver fixed-point temperature. Recently, a new radiation thermometer with the same design but with different spectral responsivity was constructed and employed in the laboratory. In this work, we present the comparative study of these thermometers. Furthermore, the paper describes the measurement results of the thermometer’s main characteristics such as the size-of-source effect, spectral responsivity, gain ratio, and linearity. Besides, both thermometers were calibrated at the freezing temperatures of indium, tin, zinc, aluminum, and copper reference fixed-point blackbodies. The main study is focused on the impact of the spectral responsivity of thermometers on the interpolation parameters of the Sakuma–Hattori equation. Furthermore, the calibration results and the uncertainty sources are discussed in this paper.

Keywords

Calibration Fixed-point blackbody Pyrometer Radiation thermometer Temperature The Sakuma–Hattori equation 

Notes

Acknowledgements

The authors would like to thank the anonymous referees for useful comments and constructive suggestions.

References

  1. 1.
    M. Battuello, F. Lanza, T. Ricolfi, Metrologia 27, 75 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    F. Sakuma, S. Hattori, in Temperature: Its Measurement and Control in Science and Industry, vol. 5, ed. by J.F. Schooley. AIP Conference Proceedings (New York, 1982). pp. 421–427Google Scholar
  3. 3.
    H.W. Yoon, C.E. Gibson, V. Khromchenko, G.P. Eppeldauer, Int. J. Thermophys. 28, 2076 (2007)ADSCrossRefGoogle Scholar
  4. 4.
    X.P. Hao, H.C. McEvoy, G. Machin, Z.D. Yuan, T.J. Wang, Meas. Sci. Technol. 24, 075004 (2013)ADSCrossRefGoogle Scholar
  5. 5.
    F. Girard, T. Ricolfi, in Proceedings of TEMPMEKO 2004, 9th International Symposium on Temperature and Thermal Measurements in Industry and Science (Dubrovnik, Croatia, 2004), pp. 827–732Google Scholar
  6. 6.
    M. Battuello, F. Girard, T. Ricolfi, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple. AIP Conference Proceedings (Chicago, 2002). pp. 903–908Google Scholar
  7. 7.
    T. Ricolfi, F. Girard, in Proceedings of TEMPMEKO 1999, 7th International Symposium on Temperature and Thermal Measurements in Industry and Science (Delft, 1999), pp. 593–598Google Scholar
  8. 8.
    G. Machin, R.Sergienko, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science (VDE Verlag, Berlin, 2002), pp. 155–160Google Scholar
  9. 9.
    F. Sakuma, L. Ma, Z. Yuan, in Proceedings of TEMPMEKO 2001, 8th International Symposium on Temperature and Thermal Measurements in Industry and Science (VDE Verlag, Berlin, 2002), pp. 161-166Google Scholar
  10. 10.
    M. Battuello, P. Bloembergen, F. Girard, T. Ricolfi, AIP Conf. Proc. 684, 613 (2003)ADSCrossRefGoogle Scholar
  11. 11.
    D.J. Shin, D.H. Lee, C.W. Park, S.N. Park, Metrologia 42, 154 (2005)ADSCrossRefGoogle Scholar
  12. 12.
    D.J. Shin, S. Park, K.L. Jeong, S.N. Park, D.H. Lee, Metrologia 51, 25 (2014)ADSCrossRefGoogle Scholar
  13. 13.
    H. Nasibov, E. Balaban, A. Kholmatov, A. Nasibov, Flow Meas. Instrum. 37, 12 (2014)CrossRefGoogle Scholar
  14. 14.
    W. Dong, Z. Yuan, P. Bloembergen, X. Lu, Y. Duan, Int. J. Thermophys. 32, 2587 (2011)ADSCrossRefGoogle Scholar
  15. 15.
    P. Corredera, M.L. Hernanz, M. Gonzales-Herraez, J. Campos, Metrologia 40, S150 (2003)CrossRefGoogle Scholar
  16. 16.
    D.J. Shin, D.H. Lee, G.R. Jeong, Y.J. Cho, S.N. Park, I.W. Lee, in Proceedings of NEWRAD 2005, 9th International Conference on New Developments and Applications in Optical Radiometry (Davos, 2005), pp. 77–78Google Scholar
  17. 17.
    H.W. Yoon, J.J. Butler, T.C. Larason, G.P. Eppeldauer, Metrologia 40, S154 (2003)ADSCrossRefGoogle Scholar
  18. 18.
    H. Nasibov, S.Ugur, in Proceedings of IMEKO 2003, 17th World Congress Metrology in the 3rd Millennium (Dubrovnik, Croati, 2003), pp. 1702–1705Google Scholar
  19. 19.
    F. Girard, T. Ricolfi, Meas. Sci. Technol. 9, 1215–1218 (1998)ADSCrossRefGoogle Scholar
  20. 20.
    A. Diril, H. Nasibov, S. Ugur, in Temperature: Its Measurement and Control in Science and Industry, vol. 7, ed. by D.C. Ripple. AIP Conference Proceedings (Chicago, 2002)Google Scholar
  21. 21.
    P. Saunders, D.R. White, Metrologia 41, 41 (2004)ADSCrossRefGoogle Scholar
  22. 22.
    P. Saunders, D.R. White, Metrologia 40, 195 (2003)ADSCrossRefGoogle Scholar
  23. 23.
    P. Saunders et al., Int. J. Thermophys. 29, 1066 (2008)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.TUBITAK UMEKocaeliTurkey

Personalised recommendations