Density of Methylcyclohexane at Temperatures up to 600 K and Pressures up to 200 MPa

  • Y. Yoneda
  • S. Sato
  • T. Matsumoto
  • H. MiyamotoEmail author
Part of the following topical collections:
  1. Asian Thermophysical Properties Conference Papers


Using a bellows variable volumometer, precise density data were measured for methylcyclohexane, which is expected to be a chemical hydride for transportation and storage of hydrogen. For further development of an accurate equation of state, measurements were taken in the temperature and pressure ranges 410 K to 600 K and 10 MPa to 200 MPa, respectively. The uncertainties (\(k=2\)) were less than 3.5 mK for the temperature measurements, 0.080 MPa for the pressure measurements, and 0.11% for the density measurements. In the region above 100 MPa and 450 K, the uncertainty for the density measurement increased from 0.11% to 0.22%. The data obtained in this study were systematically compared with available experimental data and theoretical values derived from the available equation of state. This comparison indicated that the model needs to be improved.


Density Hydrogen storage medium Measurements Methylcyclohexane Pressure Temperature 



This work was supported by a Grant-in-Aid for the Scientific Research Fund 2015–2018 (Project No. 15K05837) from the Ministry of Education, Culture, Sports, Science and Technology, Japan. The funding source did not play a role in any aspect of the study or in our decision to submit the paper for publication.


  1. 1.
    N. Kariya, A. Fukuoka, T. Utagawa, M. Sakuramoto, Y. Goto, M. Ichikawa, Appl. Catal. A: Gen. 247, 247–259 (2003)CrossRefGoogle Scholar
  2. 2.
    E. Sapei, P. Uusi-Kyyny, K.I. Keskinen, V. Alopaeus, Fluid Phase Equilib. 288, 155–160 (2010)CrossRefGoogle Scholar
  3. 3.
    A.M. Kerimov, T.A. Apaev, Teplofiz. Svoistva Veshchestv Mater. 5, 26–46 (1972)Google Scholar
  4. 4.
    W. Wagner, A. Pruss, J. Phys. Chem. Ref. Data 31, 387–535 (2002)ADSCrossRefGoogle Scholar
  5. 5.
    P. Gouel, Bull. Centers Rech. Explor.-Prod. Elf-Aquitaine 2, 211–225 (1978)Google Scholar
  6. 6.
    A. Et-Tahir, C. Boned, B. Lagourette, P. Xans, Int. J. Thermophys. 16, 1309–1334 (1995)ADSCrossRefGoogle Scholar
  7. 7.
    A. Laesecke, S.L. Outcalt, K.J. Brumback, Energy Fuels 22, 2629–2636 (2008)CrossRefGoogle Scholar
  8. 8.
    E.W. Lemmon, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Ver. 9.1. National Institute of Standard and Technology, USA (2013)Google Scholar
  9. 9.
    S. Muromachi, H. Miyamoto, M. Uematsu, J. Chem. Thermodyn. 40, 1594 (2008)CrossRefGoogle Scholar
  10. 10.
    T. Ito, Y. Nagata, H. Miyamoto, Int. J. Thermophys. 35, 1636–1646 (2014)ADSCrossRefGoogle Scholar
  11. 11.
    P.W. Bridgman, Proc. Am. Acad. Arts Sci. 77, 129–146 (1949)CrossRefGoogle Scholar
  12. 12.
    D.W. Brazier, G.R. Freeman, Can. J. Chem. 47, 893–899 (1969)CrossRefGoogle Scholar
  13. 13.
    J. Jonas, D. Hasha, S.G. Huang, J. Chem. Phys. 71, 3996 (1979)ADSCrossRefGoogle Scholar
  14. 14.
    K. Holzapfel, G. Goetze, F. Kohler, Int. DATA Ser. Sel. Data Mix. Ser. A, 38–65 (1986)Google Scholar
  15. 15.
    A. Baylaucq, C. Boned, P. Dauge, B. Lagourette, Int. J. Thermophys. 18, 3–23 (1997)ADSCrossRefGoogle Scholar
  16. 16.
    C.K. Zeberg-Mikkelsen, M. Barrouhou, C. Boned, Int. J. Thermophys. 24, 361–374 (2003)CrossRefGoogle Scholar
  17. 17.
    C.K. Zeberg-Mikkelsen, L. Lugo, J. Fernandez, J. Chem. Thermodyn. 37, 1294–1304 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Mechanical Systems EngineeringToyama Prefectural UniversityImizuJapan

Personalised recommendations