Advertisement

Photopyroelectric Characterization of Magnetic Nanofluids. Influence of Type and Size of Nanoparticles on the Thermal Parameters

  • D. Dadarlat
  • I. Craciunescu
  • R. Turcu
  • C. TriponEmail author
CPPTA3
  • 531 Downloads
Part of the following topical collections:
  1. 3rd Conference on Photoacoustic and Photothermal Theory and Applications

Abstract

The influence of type and size of nanoparticles on the thermal parameters of some magnetic nanofluids is investigated. Two types of carrier liquids (transformer oil and polypropylene glycol) were combined with two types of iron based magnetic nanoparticles (\(\hbox {Fe}_{3}\hbox {O}_{4}\) and \(\hbox {MnFe}_{2}\hbox {O}_{4})\). Different sizes (10 nm–80 nm) and shapes (spherical, octahedral or cubic) of nanoparticles were obtained depending on the oleic acid/oleylamine molar ratio, which drastically influences the nanocrystals growth rate. This influence is due to the different binding ability of the two stabilizers onto crystal facets. The average size of nanoparticles was 10 nm, 35 nm and 50 nm for \(\hbox {Fe}_{3}\hbox {O}_{4}\) and 10 nm, 20 nm and 80 nm for \(\hbox {MnFe}_{2}\hbox {O}_{4}\) at a concentration of 50 mg\({\cdot }\)ml\(^{-1}\) in all cases. The results obtained by PPE technique indicate that, at this concentration, the presence of the nanoparticles reduces the value of the thermal parameters of pure carrier liquids and both thermal diffusivity and effusivity decrease with increasing nanoparticles size, independently on the carrier liquid. The influence of the nanoparticles size is more pronounced for the thermal effusivity (relative change 24 %) compared with thermal diffusivity (relative change 7 %).

Keywords

Magnetic nanofluids Photopyroelectric technique Thermal parameters Type and size of nanoparticles 

Notes

Acknowledgements

The authors acknowledge the financial support by the Ministry of Education Research and Youth of Romania, through the National Research Programs, PN-II-ID-PCE-2011-3-0036.

References

  1. 1.
    D. Dadarlat, Laser Phys. 19, 1330 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    D. Dadarlat, C. Neamtu, in Thermal Wave Physics and Related Photothermal Techniques: Basic Principles and Recent Developments, ed. By E.M. Marin (Transworld Research Network, Trivandrum, Kerala, 2009)Google Scholar
  3. 3.
    A. Sikorska, D. Dadarlat, B.B.J. Linde, M. Streza, C. Neamtu, A. Sliwinski, J. Phys. IV 137, 341 (2006)Google Scholar
  4. 4.
    D. Dadarlat, J. Therm. Anal. Calorim. 110, 27 (2012)CrossRefGoogle Scholar
  5. 5.
    D. Dadarlat, M. Streza, M.N. Pop, V. Tosa, S. Delenclos, S. Longuemart, A.H. Sahraoui, J. Therm. Anal. Calorim. 101, 397 (2010)CrossRefGoogle Scholar
  6. 6.
    D. Dadarlat, S. Longuemart, R. Turcu, M. Streza, L. Vekas, A.H. Sahraoui, Int. J. Thermophys. 35, 2032 (2014)ADSCrossRefGoogle Scholar
  7. 7.
    D. Dadarlat, P.R.N. Misse, A. Maignan, E. Guilmeau, R. Turcu, L. Vekas, C. Tudoran, M. Depriester, A.H. Sahraoui, Int. J. Thermophys. 36, 2441 (2015)ADSCrossRefGoogle Scholar
  8. 8.
    M. Marinelli, F. Mercuri, U. Zammit, R. Pizzoferrato, F. Scudieri, D. Dadarlat, Phys. Rev. B 49, 9523 (1994)ADSCrossRefGoogle Scholar
  9. 9.
    J. Shen, A. Mandelis, Rev. Sci. Instrum. 66, 4999 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    J. Shen, A. Mandelis, H. Tsai, Rev. Sci. Instrum. 69, 197 (1998)ADSCrossRefGoogle Scholar
  11. 11.
    J.A. Balderas-Lopez, A. Mandelis, J.A. Garcia, Rev. Sci. Instrum. 71, 2933 (2000)ADSCrossRefGoogle Scholar
  12. 12.
    J.A. Balderas-Lopez, A. Mandelis, Rev. Sci. Instrum. 74, 700 (2003)ADSCrossRefGoogle Scholar
  13. 13.
    D. Dadarlat, C. Neamtu, Meas. Sci. Technol. 17, 3250 (2006)ADSCrossRefGoogle Scholar
  14. 14.
    M. Chirtoc, J.S. Antoniov, M. Egee, in Proceeding of 10-th International Conference on Photoacoustic and Photothermal Phenomena. (Rome, 1998), pp. 84–86Google Scholar
  15. 15.
    S. Sun, H. Zeng, D.B. Robinson, S. Raoux, P.M. Rice, S.X. Wang, G. Li, J. Am. Chem. Soc. 126, 273 (2004)CrossRefGoogle Scholar
  16. 16.
    M. Nakamura, S. Takekawa, K. Kitamura, Opt. Mater. 32, 1410 (2010)ADSCrossRefGoogle Scholar
  17. 17.
    C. Neamtu, D. Dadarlat, M. Chirtoc, A.H. Sahraoui, S. Longuemart, D. Bicanic, Instrum. Sci. Technol. 34, 225 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • D. Dadarlat
    • 1
  • I. Craciunescu
    • 1
  • R. Turcu
    • 1
  • C. Tripon
    • 1
    Email author
  1. 1.National R&D Institute for Isotopic and Molecular TechnologiesCluj-NapocaRomania

Personalised recommendations