Miniature Fixed Points as Temperature Standards for In Situ Calibration of Temperature Sensors

  • X. P. HaoEmail author
  • J. P. Sun
  • C. Y. Xu
  • P. Wen
  • J. Song
  • M. Xu
  • L. Y. Gong
  • L. Ding
  • Z. L. Liu
Part of the following topical collections:
  1. TEMPMEKO 2016: Selected Papers of the 13th International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science


Miniature Ga and Ga–In alloy fixed points as temperature standards are developed at National Institute of Metrology, China for the in situ calibration of temperature sensors. A quasi-adiabatic vacuum measurement system is constructed to study the phase-change plateaus of the fixed points. The system comprises a high-stability bath, a quasi-adiabatic vacuum chamber and a temperature control and measurement system. The melting plateau of the Ga fixed point is longer than 2 h at 0.008 W. The standard deviation of the melting temperature of the Ga and Ga–In alloy fixed points is better than 2 mK. The results suggest that the melting temperature of the Ga or Ga–In alloy fixed points is linearly related with the heating power.


Ga and Ga–In alloy In situ calibration Miniature fixed-point Phase transition Quasi-adiabatic system 



This work was supported by the National Natural Science Foundation of China (Nos. 11475162 and 51576181) and the National High-tech R&D Program (863 Program No. 2015AA123701).


  1. 1.
    H. Preston-Thomas, The International Temperature Scale of 1990 (ITS-90). Metrologia 27, 3–10 (1990)ADSCrossRefGoogle Scholar
  2. 2.
    X.P. Hao, Z.D. Yuan, J.H. Wang, J.T. Chen, Z.K. Ye, Chin. J. Sci. Instrum. 31, 231–234 (2010)Google Scholar
  3. 3.
    X.P. Hao, W.J. Zhao, Z.D. Yuan, J.H. Wang, F. Yu, Chin. J. Sci. Instrum. 31, 227–230 (2010)Google Scholar
  4. 4.
    S.Y. Huang, X.P. Hao, J.H. Wang, Z.D. Yuan, J.P. Wu, ACTA Metrol. Sin. 35, 120–124 (2014)Google Scholar
  5. 5.
    X.P. Hao, H. McEvoy, G. Machin, Meas. Sci. Technol. 24, 075004 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    X.P. Hao, Z.D. Yuan, S.Y. Huang, Int. J. Thermophys. 36, 3320–3329 (2015)ADSCrossRefGoogle Scholar
  7. 7.
    X.P. Hao, J. Song, J.P. Sun, M. Xu, Z.D. Yuan, Z.L. Liu, Opt. Precis. Eng. 23, 1845–1851 (2015)CrossRefGoogle Scholar
  8. 8.
    G. Ohring, J. Tansock, W. Emery, J. Butler, L. Flynn, F.Z. Weng, K.S. Germain, B. Wielicki, C.Y. Cao, M. Goldberg, J. Xiong, G. Fraser, D. Kunkee, D. Winker, L. Miller, S. Ungar, D. Tobin, J.G. Anderson, D. Pollock, S. Shipley, A. Thurgood, G. Kopp, P. Ardanuy, T. Stone, Eos Trans. Am. Geophys. Union 88, 136–137 (2007)ADSCrossRefGoogle Scholar
  9. 9.
    F.A. Best, D.P. Adler, C. Pettersen, H.E. Revercomb, J.H. Perepezko, Proc. SPIE 7857, 78570J-3 (2010)CrossRefGoogle Scholar
  10. 10.
    A. Burdakin, B. Khlevnoy, M. Samoylov, V. Sapritsky, S. Ogarev, A. Panfiloy, G. Bingham, V. Privalsky, J. Tansock, T. Humphery, Metrologia 45, 75–82 (2008)ADSCrossRefGoogle Scholar
  11. 11.
    G. Krapf, M. Schalles, XIX IMEKO World Congress. Lisbon, Portugal, pp. 1509–1513 (2009)Google Scholar
  12. 12.
    F. Edler, P. Ederer, Int. J. Thermophys. 35, 1180–1189 (2014)ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Division of Thermophysics and Process MeasurementsNational Institute of MetrologyBeijingChina
  2. 2.School of ScienceXi’an Polytechnic UniversityXi’anChina
  3. 3.College of Applied Nuclear Technology and Automation EngineeringChengdu University of TechnologyChengduChina
  4. 4.Key Laboratory of Infarared System Detection and Imaging Technology, Shanghai Institute of Technical PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations