Theoretical Study of the Conditions of Maximum Manifestation of the Error Due to Inhomogeneity of Thermocouple Legs

  • Zhigang Liu
  • Wenguang Song
  • Orest KochanEmail author
  • Mykola Mykyichuk
  • Su Jun


The method of theoretical analysis of temperature ranges for the maximum manifestation of the error due to acquired thermoelectric inhomogeneity of thermocouple legs is proposed in this paper. The drift function of the reference function of a type K thermocouples in a ceramic insulation, that consisted of 1.2 mm diameter thermoelements after their exposure to 800 \(^{\circ }\)C for 10 000 h in an oxidizing atmosphere (air), is analyzed. The method takes into account various operating conditions to determine the optimal conditions for studying inhomogeneous thermocouples. The method can be applied for other types of thermocouples when taking into account their specific characteristics and the conditions that they have been exposed to.


Drift of a reference function Error due to inhomogeneity of a thermocouple Industrial temperature measurement Thermocouple 



This work was supported by Natural Science Foundation of Hubei Province of China (2014CFB605), Foundation of Wuhan Science and technology Bureau (2015030809020370), Doctoral Scientific Research Fund from Hubei University of Technology (No. BSQD14037).


  1. 1.
    J. Webster, Measurement, instrumentation, and sensors handbook. (CRCnetBase 1999).
  2. 2.
    A. Glowacz, Z. Glowacz, Measurement (2016). doi: 10.1016/j.measurement.2016.07.008 CrossRefGoogle Scholar
  3. 3.
    H. Ashrafi, K. Shahbazian, S. Bidmeshki et al., Adv. Sci. Technol. Res. J. (2016). doi: 10.12913/22998624/61925 CrossRefGoogle Scholar
  4. 4.
    R.W. Maruda, G.M. Krolczyk, P. Nieslony et al., J. Manuf. Process. (2016). doi: 10.1016/j.jmapro.2016.08.006 CrossRefGoogle Scholar
  5. 5.
    J. Birch, Report. Benefit of Legal Metrology for the Economy and Society. A study for the International Committee of Legal Metrology (2003)Google Scholar
  6. 6.
    J. Birch, Role and impact of legal metrology for consumer protection. ISO/COPOLCO Workshop 2012.
  7. 7.
    V. Kočí, J. Kočí, T. Korecký et al., Meas. Sci. Rev. (2015). doi: 10.1515/msr-2015-0013 CrossRefGoogle Scholar
  8. 8.
    T. Habisreuther, T. Elsmann et al., Appl. Therm. Eng. (2015). doi: 10.1016/j.applthermaleng.2015.08.096
  9. 9.
    A. Glowacz, Z. Glowacz, Appl. Acoust. (2017). doi: 10.1016/j.apacoust.2016.10.012
  10. 10.
    S. Jun, O. Kochan, V. Kochan et al., Int. J. Thermophys. (2016). doi: 10.1007/s10765-015-2025-x CrossRefGoogle Scholar
  11. 11.
    S. Jun, O. Kochan, Meas. Tech. (2015). doi: 10.1007/s11018-015-0596-3 CrossRefGoogle Scholar
  12. 12.
    L. Kortvelyessy, Thermoelement Praxis, 3rd edn. (Vulkan, Essen, 1998)Google Scholar
  13. 13.
    D.C. Ripple, K.M. Garrity, M. Araya et al., Metrologia (2007). doi: 10.1088/0026-1394/44/1A/03007 CrossRefGoogle Scholar
  14. 14.
    D.J. Southworth, in Temperature Calibration with Isotech Block Baths, Handbook of Isothermal Corporation Limited (1999), pp. 18–19Google Scholar
  15. 15.
    K.C. Sloneker, Ceram. Ind. 159, 13 (2009)Google Scholar
  16. 16.
    G. Krapf, M. Schalles, T. Fröhlich, Measurement (2011). doi: 10.1016/j.measurement.2010.10.015
  17. 17.
    B. Khlevnoy, Y. Yamada, I. Grigoryeva et al., Int. J. Thermophys. (2011). doi: 10.1007/s10765-011-1038-3 CrossRefGoogle Scholar
  18. 18.
    A. Ivanova, S. Gerasimov, Meas. Tech. (2008). doi: 10.1007/s11018-008-9067-4 CrossRefGoogle Scholar
  19. 19.
    D. Zvizdic, D. Sestan, Int. J. Thermophys. (2015). doi: 10.1007/s10765-015-1846-y CrossRefGoogle Scholar
  20. 20.
    A. Sachenko, V. Kochan, R. Kochan, et al., in In Proceedings of the International IEEE Conference on Instrumentation and Measurement Technology IMTC’2001(Budapest, 2001), pp. 869–874Google Scholar
  21. 21.
    V.P. Pavlov, The Thermoelectric Inhomogeneity of Thermocouple Legs (Publishing House of Standards, Moscow, 1979)Google Scholar
  22. 22.
    I. Kyrenkov, Transactions of VNIIM (VNIIM, Moscow, 1976)Google Scholar
  23. 23.
    M. Holmsten, J. Ivarsson, R. Falk et al., Int. J. Thermophys. (2008). doi: 10.1007/s10765-008-0418-9 CrossRefGoogle Scholar
  24. 24.
    Y. Abdelaziz, F. Edler, Meas. Sci. Technol. (2009). doi: 10.1088/0957-0233/20/5/055102 CrossRefGoogle Scholar
  25. 25.
    M. Holmsten, S. Ljungblad, L. E. Josefson, in Proceedings of Joint International Symposium on Temperature, Humidity, Moisture and Thermal Measurements in Industry and Science TEMPMEKO-2010, vol A, (Portoroz, Slovenia, 2010), p. 87Google Scholar
  26. 26.
    D. Zvizdic, T. Veliki, in Proceedings of the XVIII IMEKO World Congress “Metrology for a Sustainable Development”, (Rio de Janeiro, 2006), pp. 2021–2025Google Scholar
  27. 27.
    M. A. P. Castanho, C. R. Baldo, in Proceedings of the XX IMEKO World Congress Metrology for Green Growth, (Busan, 2012), pp. 9–14Google Scholar
  28. 28.
    M. Hiti, J. Bojkovski, V. Batagelj et al., Electr. Rev. 72, 189 (2005)Google Scholar
  29. 29.
    K.C. Sloneker, Int. J. Thermophys. (2011). doi: 10.1007/s10765-011-0942-x CrossRefGoogle Scholar
  30. 30.
    J. Tamba, K. Yamazawa, S. Masuyama et al., Int. J. Thermophys. (2011). doi: 10.1007/s10765-011-1084-x CrossRefGoogle Scholar
  31. 31.
    G. Zaid, Instrumentasi 27, 1 (2003)Google Scholar
  32. 32.
    S. Jun, O.V. Kochan, V.S. Jotsov, Meas. Tech. (2015). doi: 10.1007/s11018-015-0709-z CrossRefGoogle Scholar
  33. 33.
    P. Pavlasek, S. Duris, R. Palencar, J. Phys.: Conf. Ser. (2015). doi: 10.1088/1742-6596/588/1/012016 CrossRefGoogle Scholar
  34. 34.
    E.S. Webster, D.R. White, H. Edgar, Int. J. Thermophys. (2015). doi: 10.1007/s10765-014-1810-2 CrossRefGoogle Scholar
  35. 35.
    N. Rogelberg, A. Nuzhnov, G. Pokrovskaya, et al., in Investigation of alloys for thermocouples. Proceedings of “Giprotsvetmetobrabotka”, No. XXIX, (Mettalurgy, Moscow), p. 33Google Scholar
  36. 36.
    J. Stewart, Single Variable Calculus (Brooks/Cole, Boston, 2012)Google Scholar
  37. 37.
    G.M. Krolczyk, R.W. Maruda, P. Nieslony et al., Measurement (2016). doi: 10.1016/j.measurement.2016.08.023 CrossRefGoogle Scholar
  38. 38.
    N. Vasyl’kiv, O. Kochan, R.Kochan, et al, in Proceedings of the International Workshop IDAACS 2009, (Rende-Cosenza 2009), pp. 201–206Google Scholar
  39. 39.
    S. Jun, O. Kochan, W. Chunzhi et al., Meas. Sci. Rev. (2015). doi: 10.1515/msr-2015-0041 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Zhigang Liu
    • 1
  • Wenguang Song
    • 2
  • Orest Kochan
    • 3
    Email author
  • Mykola Mykyichuk
    • 3
  • Su Jun
    • 4
  1. 1.Control Technology InstituteWuxi Institute of TechnologyWuxiChina
  2. 2.School of ComputerYangtze UniversityJingzhouChina
  3. 3.Department of Information-Measuring EngineeringLviv Polytechnic National UniversityLvivUkraine
  4. 4.School of Computer ScienceHubei University of TechnologyWuhanChina

Personalised recommendations