Advertisement

Investigation on Stability and Optical Properties of Titanium Dioxide and Aluminum Oxide Water-Based Nanofluids

  • Kin Yuen LeongEmail author
  • Z. A. Najwa
  • K. Z. Ku Ahmad
  • Hwai Chyuan Ong
Article

Abstract

Water is regarded as a poor absorber of solar energy. This affects the efficiency of solar thermal systems. The addition of nanoparticles to heat transfer fluids used in solar thermal systems can enhance their optical properties. These new-generation heat transfer fluids are known as nanofluids. The present study investigates the stability and optical properties of three nanofluids, including aluminum oxide (13 nm and <50 nm) and titanium dioxide (21 nm) nanofluids. The stability of the nanofluids was observed through a photo-capturing method and zeta potential measurements. Ultraviolet–visible (UV–Vis) spectrophotometer was used to measure the absorbance and transmittance of the prepared nanofluids. The effect of factors such as type of particle, type of surfactant, and pH of the solution on the optical properties of the nanofluids was also investigated. We found that the titanium dioxide nanofluid had better optical properties but lower stability compared to aluminum oxide nanofluids.

Keywords

Aluminum oxide Nanofluids Optical properties Stability Surfactant Titanium dioxide 

Notes

Acknowledgements

The authors would like to acknowledge the Ministry of Higher Education, Malaysia, and Universiti Pertahanan Nasional Malaysia for their financial support under FRGS/2/2014/TK01/UPNM/03/1.

References

  1. 1.
    T.P. Otanicar, P.E. Phelan, J.S. Golden, Sol. Energy 83, 969 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    K.Y. Leong, H.C. Ong, N.H. Amer, M.J. Norazrina, M.S. Risby, K.Z. Ku Ahmad, Renew. Sust. Energy Rev. 53, 1092 (2016)CrossRefGoogle Scholar
  3. 3.
    G. Puliti, S. Paolucci, M. Sen, ASME Appl. Mech. Rev. 64, 030803 (2012)ADSCrossRefGoogle Scholar
  4. 4.
    W.H. Azmi, N.A. Usri, R. Mamat, K.V. Sharma, M.M. Noor, App. Therm. Eng. 112, 707 (2017)CrossRefGoogle Scholar
  5. 5.
    S.K. Verma, A.K. Tiwari, D.S. Chauhan, Energy Conv. Manag. 134, 103 (2017)CrossRefGoogle Scholar
  6. 6.
    S.S. Meibodi, A. Kianifar, H. Niazmand, O. Mahian, S. Wongwises, Int. Commun. Heat Mass Transf. 65, 71 (2015)CrossRefGoogle Scholar
  7. 7.
    F. Garoosi, L. Jahanshaloo, M.M. Rashidi, A. Badakhsh, M.E. Ali, Appl. Math. Comput. 254, 183 (2015)MathSciNetGoogle Scholar
  8. 8.
    N. Freidoonimehr, M.M. Rashidi, S. Mahmud, Int. J. Therm. Sci. 87, 136 (2015)CrossRefGoogle Scholar
  9. 9.
    M.M. Rashidi, E. Momoniat, M. Ferdows, A. Basiriparsa, Math. Probl. Eng. 2014, 239082 (2014)CrossRefGoogle Scholar
  10. 10.
    O.A. Bég, M.M. Rashidi, M. Akbari, A. Hosseini, J. Mech. Med. Biol. 14, 1450011 (2014)CrossRefGoogle Scholar
  11. 11.
    A. Ghadimi, R. Saidur, H.S.C. Metsalaar, Renew. Sust. Energy Rev. 54, 4051 (2011)Google Scholar
  12. 12.
    A. Ghadimi, I.H. Metselaar, Exp. Therm. Fluid Sci. 51, 1 (2013)CrossRefGoogle Scholar
  13. 13.
    C. Anushree, J. Philip, J. Mol. Liq. 222, 350 (2016)CrossRefGoogle Scholar
  14. 14.
    M.A. Khairul, K. Shah, E. Doroodchi, R. Azizan, B. Moghtaderi, Int. J. Heat Mass Transf. 98, 778 (2016)CrossRefGoogle Scholar
  15. 15.
    H.J. Kim, S.H. Lee, J.H. Lee, S.P. Jang, Energy 90, 1290 (2015)CrossRefGoogle Scholar
  16. 16.
    Babita, S.K. Sharma, S.M. Gupta, Exp. Therm. Fluid Sci. 79, 202 (2016)Google Scholar
  17. 17.
    K.Y. Leong, M.H. Nurfadhillah, M.S. Risby, A.N. Hafizah, Therm. Sci. 20, 429 (2016)CrossRefGoogle Scholar
  18. 18.
    R.S. Khedkar, N. Shrivastava, S.S. Sonawane, K.L. Wasewar, Int. Commun. Heat Mass Transf. 73, 54 (2016)Google Scholar
  19. 19.
    M. Hemmat Esfe, A. Karimipour, W.M. Yan, M. Akbari, M.R. Safaei, M. Dahari, Int. J. Heat Mass Transf. 88, 54 (2015)CrossRefGoogle Scholar
  20. 20.
    Z. Said, R. Saidur, N.A. Rahim, Int. Commun. Heat Mass Transf. 59, 46 (2014)CrossRefGoogle Scholar
  21. 21.
    M.H. Sajid, Z. Said, R. Saidur, F.R.M. Adikan, M.F.M. Sabri, N.A. Rahim, Int. Commun. Heat Mass Transf. 50, 108 (2014)Google Scholar
  22. 22.
    D. Rativa, L.A. Gómez-Malagón, Sol. Energy 118, 419 (2015)ADSCrossRefGoogle Scholar
  23. 23.
    T.B. Gorji, A.A. Ranjbar, S.N. Mirzababaei, Sol. Energy 119, 332 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    M. Karami, M.A. Akhavan-Behabadi, M. Raisee Dehkordi, S. Delfani, Sol. Energy Mat. Sol. C 144, 136 (2016)CrossRefGoogle Scholar
  25. 25.
    A. Menbari, A.A. Alemrajabi, Opt. Mater. 52, 116 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    Sigma Aldrich, Titanium IV Oxide. http://www.sigmaaldrich.com/catalog/product/aldrich/718467?lang=en&region=MY. Accessed 15 Jan 2017
  27. 27.
    D.D.L Chung, Carbon Composites, Composites with Carbon Fibers, Nanofibers and Nanotubes, 2nd edn. (Elsevier, Oxford , 2017), pp. 517Google Scholar
  28. 28.
    Glass & Glazing Association of Australia (AGGA), Technical Data Sheet, Solar Spectrum Technical Fact Sheet Solar Spectrum. https://www.agga.org.au/technical/technical-fact-sheets. Accessed 15 Jan 2017
  29. 29.
    L. Vandsburger, Synthesis and Covalent Surface Modification of Carbon Nanotubes for Preparation of Stabilized Nanofluid Suspensions (M.Eng.McGill University, Montreal, 2009)Google Scholar
  30. 30.
    Y. Wu, K. Du, L. Yang, S. Bao, E. Wenji, Key Eng. Mater. 609–610, 587 (2014)CrossRefGoogle Scholar
  31. 31.
    Z. Said, M.H. Sajid, R. Saidur, G.A. Mahdiraji, N.A. Rahim, Numer. Heat Tranf. A Appl. 67, 1 (2015)Google Scholar
  32. 32.
    H. Adam, M.A. Siddig, A.A. Siddig, N.A. Eltahir, Sudan Med. Monit. 8, 174 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kin Yuen Leong
    • 1
    Email author
  • Z. A. Najwa
    • 1
  • K. Z. Ku Ahmad
    • 1
  • Hwai Chyuan Ong
    • 2
  1. 1.Department of Mechanical EngineeringUniversiti Pertahanan Nasional MalaysiaKuala LumpurMalaysia
  2. 2.Department of Mechanical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations