Advertisement

Analysis of the Measurement System and Optimization of the Measurement Procedure for Detection of Thermal Memory Effects by Photoacoustic Experiments

  • S. TodosijevićEmail author
  • Z. Šoškić
  • Z. Stojanović
  • S. Galović
ICPPP 18
  • 153 Downloads
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena

Abstract

Experimental verification of thermal memory effects represents a challenge that is important from both fundamental and practical points of view. Recent theoretical studies suggest that the thermal memory effect should lead to thermal resonances in the modulation frequency characteristics of photoacoustic response. Therefore, studies of thermal resonances in photoacoustic response represent an alternative for detection of the thermal memory effect and measurement of thermal memory properties. Since the resonances were not observed, this paper analyzes standard measurement setups and shows that the experimental technique should be optimized to provide a better chance of detection of thermal memory effects by photoacoustic measurements. The results show that a proper selection of modulation frequencies and the knowledge of the approximate transfer function of the electronic part of the photoacoustic measurement system are prerequisites for detection of thermal resonances in the modulation frequency characteristics of photoacoustic response.

Keywords

Photoacoustic effect Thermal memory 

Notes

Acknowledgements

This work was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia through research Projects TR-37020 and III 45005.

References

  1. 1.
    H.S. Carslaw, J.C. Jaeger, Conduction of Heat in Solids, 2nd edn. (Clarendon Press, Oxford, 1959)zbMATHGoogle Scholar
  2. 2.
    W. Dreyer, H. Struchtrup, Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)ADSMathSciNetCrossRefGoogle Scholar
  3. 3.
    T. Baba, N. Taketoshi, T. Yagi, Development of ultrafast laser flash methods for measuring thermophysical properties of thin films and boundary thermal resistances. Jpn. J. Appl. Phys 50, 11RA01 (2011)CrossRefGoogle Scholar
  4. 4.
    P. Ván, B. Czél, T. Fülöp, G. Gróf, Á. G. J. Verhás, Experimental aspects of heat conduction beyond Fourier (2013), arXiv:1305.3583
  5. 5.
    R. Kovács, P. Ván, Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)CrossRefGoogle Scholar
  6. 6.
    P. Ván, Theories and heat pulse experiments of non-Fourier heat conduction (2015), arXiv:1501.04234
  7. 7.
    S. Galović, D. Kostoski, Photothermal wave propagation in media with thermal memory. J. Appl. Phys. 93, 3063–3070 (2003)ADSCrossRefGoogle Scholar
  8. 8.
    D. Jou, J. Casas-Vázquez, G. Lebon, Extended irreversible thermodynamics. Rep. Prog. Phys. 51, 1105 (1988)ADSMathSciNetCrossRefGoogle Scholar
  9. 9.
    K. Mitra, S. Kumar, A. Vedevarz, M.K. Moallemi, Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117, 568–573 (1995)CrossRefGoogle Scholar
  10. 10.
    I.A. Novikov, Harmonic thermal waves in materials with thermal memory. J. Appl. Phys. 81, 1067–1072 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    S. Galović, Thermal effects induced by laser irradiation of solids, in The Physics of Ionized Gases: 22nd Summer School and International Symposium on the Physics of Ionized Gases, Invited Lectures, Topical Invited Lectures and Progress Reports, vol 740, No. 1, (AIP Publishing, 2004) pp. 221–232Google Scholar
  12. 12.
    A. Rosencwaig, A. Gersho, Theory of the photoacoustic effect with solids. J. Acoust. Soc. Am. 58, S52–S52 (1975)Google Scholar
  13. 13.
    A.C. Tam, Applications of photoacoustic sensing techniques. Rev. Mod. Phys. 58, 381 (1986)ADSCrossRefGoogle Scholar
  14. 14.
    H.K. Park, C.P. Grigoropoulos, A.C. Tam, Optical measurements of thermal diffusivity of a material. Int. J. Thermophys. 16, 973–995 (1995)ADSCrossRefGoogle Scholar
  15. 15.
    G. Rousset, F. Lepoutre, L. Bertrand, Influence of thermoelastic bending on photoacoustic experiments related to measurements of thermal diffusivity of metals. J. Appl. Phys. 54, 2383–2391 (1983)ADSCrossRefGoogle Scholar
  16. 16.
    D.D. Markushev, M.D. Rabasović, M. Nesic, M. Popovic, S. Galovic, Influence of thermal memory on thermal piston model of photoacoustic response. Int. J. Thermophys. 33, 2210–2216 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    M. Nešić, P. Gusavac, M. Popović, Z. Šoškić, S. Galović, Thermal memory influence on the thermoconducting component of indirect photoacoustic response. Phys. Scr. 2012, 014018 (2012)CrossRefGoogle Scholar
  18. 18.
    S. Galović, Z. Šoškić, M. Popović, D. Čevizović, Z. Stojanović, Theory of photoacoustic effect in media with thermal memory. J. Appl. Phys. 116, 024901 (2014)ADSCrossRefGoogle Scholar
  19. 19.
    M. Nesic, S. Galovic, Z. Soskic, M. Popovic, D.M. Todorovic, Photothermal thermoelastic bending for media with thermal memory. Int. J. Thermophys. 33, 2203–2209 (2012)ADSCrossRefGoogle Scholar
  20. 20.
    Z. Šoškić, S. Ćirić-Kostić, S. Galović, An extension to the methodology for characterization of thermal properties of thin solid samples by photoacoustic techniques. Int. J. Therm. Sci. 109, 217–230 (2016)CrossRefGoogle Scholar
  21. 21.
    J.A. Balderas-Lopez, A. Mandelis, Self-normalized photothermal technique for accurate thermal diffusivity measurements in thin metal layers. Rev. Sci. Instrum. 74, 5219–5225 (2003)ADSCrossRefGoogle Scholar
  22. 22.
    J.A. Balderas-Lopez, Self-normalized photoacoustic technique for thermal diffusivity measurements of transparent materials. Rev. Sci. Instrum. 79, 024901 (2008)ADSCrossRefGoogle Scholar
  23. 23.
    D.D. Markushev, J. Ordonez-Miranda, M.D. Rabasović, S. Galović, D.M. Todorović, S.E. Bialkowski, Effect of the absorption coefficient of aluminium plates on their thermoelastic bending in photoacoustic experiments. J. Appl. Phys. 117, 245309 (2015)ADSCrossRefGoogle Scholar
  24. 24.
    J.L. Pichardo, E. Marin, J.J. Alvarado-Gil, J.G. Mendoza-Alvarez, A. Cruz-Orea, I. Delgadillo, G. Torres-Delgado, H. Vargas, Photoacoustic measurements of the thermal properties of AlyGa1-yAs alloys in the region \(0<\text{ y }<\) 0.5. Appl. Phys. A 65, 69–72 (1997)ADSCrossRefGoogle Scholar
  25. 25.
    M.N. Popovic, M.V. Nesic, S. Ciric-Kostic, M. Zivanov, D.D. Markushev, M.D. Rabasovic, S.P. Galovic, Helmholtz resonances in photoacoustic experiment with laser-sintered polyamide including thermal memory of samples. Int. J. Thermophys. 37, 116 (2016)ADSCrossRefGoogle Scholar
  26. 26.
    B. Goelzer, C.H. Hansen, G. Sehrndt, Occupational Exposure to Noise: Evaluation, Prevention and Control (World Health Organisation, Geneva, 2001)Google Scholar
  27. 27.
    K. Ogata, Modern Control Engineering, 5th edn. (Prentice Hall, Upper Saddle River, 2010)zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Todosijević
    • 1
    • 2
    Email author
  • Z. Šoškić
    • 2
  • Z. Stojanović
    • 3
  • S. Galović
    • 3
  1. 1.School of Electrical EngineeringUniversity of BelgradeBelgradeSerbia
  2. 2.Faculty of Mechanical and Civil EngineeringUniversity of KragujevacKraljevoSerbia
  3. 3.Vinča Institute of Nuclear SciencesUniversity of BelgradeBelgradeSerbia

Personalised recommendations