Thermal Conductivity Measurement of Anisotropic Biological Tissue In Vitro

  • Kai YueEmail author
  • Liang Cheng
  • Lina Yang
  • Bitao Jin
  • Xinxin Zhang
Asian Thermophysical Properties Conference Papers
Part of the following topical collections:
  1. Asian Thermophysical Properties Conference Papers


The accurate determination of the thermal conductivity of biological tissues has implications on the success of cryosurgical/hyperthermia treatments. In light of the evident anisotropy in some biological tissues, a new modified stepwise transient method was proposed to simultaneously measure the transverse and longitudinal thermal conductivities of anisotropic biological tissues. The physical and mathematical models were established, and the analytical solution was derived. Sensitivity analysis and experimental simulation were performed to determine the feasibility and measurement accuracy of simultaneously measuring the transverse and longitudinal thermal conductivities. The experimental system was set up, and its measurement accuracy was verified by measuring the thermal conductivity of a reference standard material. The thermal conductivities of the pork tenderloin and bovine muscles were measured using the traditional 1D and proposed methods, respectively, at different temperatures. Results indicate that the thermal conductivities of the bovine muscle are lower than those of the pork tenderloin muscle, whereas the bovine muscle was determined to exhibit stronger anisotropy than the pork tenderloin muscle. Moreover, the longitudinal thermal conductivity is larger than the transverse thermal conductivity for the two tissues and all thermal conductivities increase with the increase in temperature. Compared with the traditional 1D method, results obtained by the proposed method are slightly higher although the relative deviation is below 5 %.


Anisotropic biological tissues Sensitivity analysis Stepwise transient method Transverse and longitudinal thermal conductivities 



We gratefully acknowledge the financial support from the National Natural Science Foundation of China (No. 51276013) and Beijing Engineering Research Center for Energy Saving and Environmental Protection.


  1. 1.
    D. Salmon, Int. J. Thermophys. 23, 431 (1996)Google Scholar
  2. 2.
    D. Salmon, Meas. Sci. Technol. 12, 89 (2001)ADSCrossRefGoogle Scholar
  3. 3.
    C. Stacey, ASTM STP 1426 4, 131 (2002)Google Scholar
  4. 4.
    J.H. Blackwell, Can. J. Phys. 34, 412 (1956)ADSCrossRefGoogle Scholar
  5. 5.
    A. Alrtimi, M. Rouainia, D.A.C. Manning, Int. J. Heat Mass Transf. 72, 630 (2014)CrossRefGoogle Scholar
  6. 6.
    R.A. Perkins, R. McAllister, E.D. Sloan, M.S. Graboski, Therm. Conduct. 18, 273 (1984)Google Scholar
  7. 7.
    K.S. Kesav, S. Krishnamoorthy, S.V.S. Rao, in 9th AIAA/ASME Joint Thermophysics and Heat Transfer Conference Proceedings, vol. 2 (2006), p. 915Google Scholar
  8. 8.
    R. Coquard, D. Baillis, D. Quenard, Int. J. Heat Mass Transf. 49, 4511 (2006)CrossRefGoogle Scholar
  9. 9.
    R. Singh, N.S. Saxena, D.R. Chaudhary, J. Phys. D Appl. 18, 1 (1985)ADSCrossRefGoogle Scholar
  10. 10.
    T. Log, M.M. Metallinou, Rev. Sci. Instrum. 63, 3966 (1992)ADSCrossRefGoogle Scholar
  11. 11.
    X. Zhang, A. Degiovanni, D. Maillet, High Temp. High Press. 25, 577 (1993)Google Scholar
  12. 12.
    S.X. Cheng, Y.F. Jiang, X.G. Liang, Meas. Sci. Technol. 5, 1339 (1994)ADSCrossRefGoogle Scholar
  13. 13.
    X.G. Liang, X.S. Ge, Y.P. Zhang, Phys. Med. Biol. 36, 1599 (1991)CrossRefGoogle Scholar
  14. 14.
    Svetozár Malinarič, Int. J. Thermophys. 34, 19531 (2013)CrossRefGoogle Scholar
  15. 15.
    H. Zhang, M.J. Li, W.Z. Fang, D. Dan, Z.Y. Li, W.Q. Tao, Appl. Therm. Eng. 72, 62 (2014)CrossRefGoogle Scholar
  16. 16.
    J.C. Chato, in ASME Symposium, vol. 16 (1968)Google Scholar
  17. 17.
    H.F. Bowma, Heat Transfer in Medicine and Biology (Plemum, New York, 1985), p. 193Google Scholar
  18. 18.
    J.W. Valvano, J.T. ALLEN, H.F. Bowman, J. Biomech. Eng. 106, 192 (1984)CrossRefGoogle Scholar
  19. 19.
    M.M. Chen, K.R. Holmes, V. Rupinskas, J. Biomech. Eng. 103, 253 (1981)CrossRefGoogle Scholar
  20. 20.
    H. Arkin, K.R. Holmes, M.M. Chen, J. Biomech. Eng. 108, 208 (1986)CrossRefGoogle Scholar
  21. 21.
    H. Arkin, K.R. Holmes, M.M. Chen, J. Biomech. Eng. 108, 54 (1986)CrossRefGoogle Scholar
  22. 22.
    H. Arkin, K.R. Holmes, M.M. Chen, J. Biomech. Eng. 9, 38 (1987)CrossRefGoogle Scholar
  23. 23.
    B. Ahattacharya, R.L. Mahajan, Physiol. Meas. 24, 769 (2003)CrossRefGoogle Scholar
  24. 24.
    W.J. Parker, R.J. Jenkins, C.P. Butler, J. Appl. Phys. 32, 1679 (1961)ADSCrossRefGoogle Scholar
  25. 25.
    R. Buttner, B. Zimanowski, J. Blumm, L. Hagemann, J. Volcanol. Geotherm. Res. 80, 293 (1998)ADSCrossRefGoogle Scholar
  26. 26.
    B. Nait-Ali, K. Haberko, H. Vesteghema, J. Absi, D.S. Smith, J. Eur. Ceram. Soc. 26, 3567 (2006)CrossRefGoogle Scholar
  27. 27.
    S.E. Gustafsson, J. Appl. Phys. 53, 6064 (1982)ADSCrossRefGoogle Scholar
  28. 28.
    J.V. Beck, K.J. Arnold, Parameter Estimation in Engineering and Science (Wiley, New York, 1977)Google Scholar
  29. 29.
    E.V. Davydov, I.A. Lubashevsky, V.A. Milyaev, R.F. Musin, Biomed. Eng. 2, 1 (2008)Google Scholar
  30. 30.
    L’udovít Kubicár, Vlastimil Bohác, Meas. Sci. Technol. 11, 252 (2000)ADSCrossRefGoogle Scholar
  31. 31.
    J.C. Chato, Heat Transf. Med. Biol. 1, 167 (1985)Google Scholar
  32. 32.
    Q.L. Xia, Y.Q. Xia, Beijing Biomed. Eng. 22, 37 (2003)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Kai Yue
    • 1
    Email author
  • Liang Cheng
    • 1
  • Lina Yang
    • 1
  • Bitao Jin
    • 1
  • Xinxin Zhang
    • 1
  1. 1.School of Energy and Environmental EngineeringUniversity of Science and Technology BeijingBeijingChina

Personalised recommendations