Responses of a Quartz Crystal Resonator Against Viscosity of Liquid up to 700 MPa

  • Hiroshi YamawakiEmail author


Conductance spectra of a quartz crystal resonator against sweep frequency were obtained in methanol and 1-pentanol up to 700 MPa using a piston-cylinder type cell. A resonance peak around a nominal frequency was observed on the conductance spectra. The frequency shift of the resonance peak increased linearly with pressure. The frequency shift against pressure was represented as the sum of the parts attributed to the viscosity of the liquid and that on the pressure effect of the resonator. The measurements for the resonator immersed in methanol and 1-propanol showed that the part attributed to the compression of the resonator on the frequency shift was similar for the two liquids. An empirical relation was developed on the electrical response of the resonance against the viscosity of the surrounding liquid up to 700 MPa based on these results. It may become possible to estimate the viscosity-density product of various liquids up to this pressure from the frequency shift.


Conductance spectra High pressure Quartz crystal resonator Viscosity 


  1. 1.
    Carl J. Schaschke, Int. Rev. Chem. Eng. 2(5), 564–576 (2010)Google Scholar
  2. 2.
    S. Bruckenstein, M. Shay, Electrochim. Acta 30, 1295–1300 (1985)CrossRefGoogle Scholar
  3. 3.
    K.K. Kanazawa, J.G. Gordon II, Anal. Chim. Acta 175, 99–105 (1985)CrossRefGoogle Scholar
  4. 4.
    M. Cassiède, J.-L. Daridon, J.H. Paillol, J. Pauly, J. Appl. Phys. 108, 034505 (2010)ADSCrossRefGoogle Scholar
  5. 5.
    M. Cassiède, J.-L. Daridon, J.H. Paillol, J. Pauly, J. Appl. Phys. 109, 074501 (2011)ADSCrossRefGoogle Scholar
  6. 6.
    J.-L. Daridon, M. Cassiède, J.H. Paillol, J. Pauly, Rev. Sci. Instrum. 82, 095114 (2011)ADSCrossRefGoogle Scholar
  7. 7.
    F. Amita, Rev. High Press. Sci. Technol. 9, 146–153 (1999). doi: 10.4131/jshpreview.9.146 CrossRefGoogle Scholar
  8. 8.
    H. Fujiwara, H. Kadomatsu, K. Tohma, Rev. Sci. Instrum. 51, 1345–1348 (1980)ADSCrossRefGoogle Scholar
  9. 9.
    G.J. Piermarini, S. Block, J.D. Barnett, R.A. Forman, J. Appl. Phys. 46, 2774–2780 (1975)ADSCrossRefGoogle Scholar
  10. 10.
    F.J.V. Santos, C.A.N. Castro, Int. J. Termophys. 18, 367–378 (1997)ADSCrossRefGoogle Scholar
  11. 11.
    J.B. Seger, H.E. Oberstar, Indust. Eng. Chem. 43, 2117–2120 (1951)CrossRefGoogle Scholar
  12. 12.
    Glycerine Producers’ Association, Physical Properties of Glycerine and Its Solutions (Glycerine Producers’ Association, New York, 1963)Google Scholar
  13. 13.
    H. Muramatsu, E. Tamiya, I. Karube, Anal. Chem. 60, 2142–2146 (1988)CrossRefGoogle Scholar
  14. 14.
    B. Grocholski, R. Jeanloz, J. Chem. Phys. 123, 204503 (2005)ADSCrossRefGoogle Scholar
  15. 15.
    H.W. Xiang, A. Laesecke, M.L. Huber, J. Phys. Chem. Ref. Data 35, 1597–1620 (2006)ADSCrossRefGoogle Scholar
  16. 16.
    H.E. King Jr., E. Herbolzheimer, R.L. Cook, J. Appl. Phys. 71, 2071–2081 (1992)Google Scholar
  17. 17.
    V. Tsionsky, L. Daikhin, M. Urbakh, E. Gileadi, Langmuir 11, 674–678 (1995)Google Scholar
  18. 18.
    Y.-T. Wu, P.-J. Akoto-Ampaw, M. Elbaccouch, M.L. Hurrey, S.L. Wallen, C.S. Grant, Langmuir 20, 3665–3673 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations