Frequency-Domain Laser Ultrasound (FDLU) Non-destructive Evaluation of Stress–Strain Behavior in an Aluminum Alloy

  • Huiting Huan
  • Andreas MandelisEmail author
  • Bahman Lashkari
  • Lixian Liu
Part of the following topical collections:
  1. ICPPP-18: Selected Papers of the 18th International Conference on Photoacoustic and Photothermal Phenomena


The evaluation of the stress–strain state of metallic materials is an important problem in the field of non-destructive testing (NDT). Prolonged cyclic loading or overloading will lead to permanent changes of material strength in an inconspicuous manner that poses threat to the safety of structures, components and products. This research focuses on gauging the mechanical strength of metallic alloys through the application of frequency-domain laser ultrasound (FDLU) based on a continuous-wave diode laser source. The goal is to develop industrial NDT procedures for fatigue monitoring in metallic substrates and coatings so that the technique can be used for mechanical strength assessment. A small-scale, non-commercial rig was fabricated to hold the sample and conduct tensile FDLU testing in parallel with an adhesive strain gauge affixed on the tested sample for independent measurement of the applied stress. Harmonic modulation and lock-in detection were used to investigate the LU signal sensitivity to the stress–strain state of ordinary aluminum alloy samples. A 1 MHz focused piezoelectric transducer was used to detect the LU signal. During the tensile procedure, both amplitude and phase signals exhibited good repeatability and sensitivity to the increasing stress–strain within the elastic regime. Signals beyond the elastic limit also revealed significant change patterns.


Frequency-domain laser ultrasound (FDLU) Harmonic modulation Non-destructive testing (NDT) Stress–strain behavior 



The authors are grateful to the Natural Sciences and Engineering Research Council of Canada (NSERC) for a Discovery Grant to A.M. A.M also gratefully acknowledges the Chinese Recruitment Program of Global Experts (Thousand Talents). H.H. is thankful to the Chinese Scholarship Council (CSC) for funding awarded through its International Research Program.


  1. 1.
    M. Munidasa, A. Mandelis, M. Ball, Rev. Sci. Instrum. 69, 507 (1998)ADSCrossRefGoogle Scholar
  2. 2.
    S.G. Pierce, B. Culshaw, Q. Shan, Appl. Phys. Lett. 72, 1030 (1998)ADSCrossRefGoogle Scholar
  3. 3.
    R.F. Anastasi, E.I. Madaras, IEEE Ultrasonics Symposium, Proceedings (1999) p. 813Google Scholar
  4. 4.
    S. Telenkov, A. Mandelis, B. Lashkari, M. Forcht, J. Appl. Phys. 105, 102029 (2009)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Wu, D. Shi, Y. He, J. Appl. Phys. 83(3), 1207 (1998)CrossRefGoogle Scholar
  6. 6.
    M. Biot, J. Appl. Phys. 11, 522 (1940)ADSMathSciNetCrossRefGoogle Scholar
  7. 7.
    D.S. Hughes, J.L. Kelly, Phys. Rev. 92(5), 1145 (1953)Google Scholar
  8. 8.
    R.H. Bergman, R.A. Shahbender, J. Appl. Phys. 29, 1736 (1958)ADSCrossRefGoogle Scholar
  9. 9.
    L.R.F. Rose, J. Acoust. Soc. Am. 75(3), 723 (1984)ADSCrossRefGoogle Scholar
  10. 10.
    J.D. Achenbach, Wave Propagation in Elastic Solids (North-Holland, Amsterdam, 1973) pp. 65–78, 310–318Google Scholar
  11. 11.
    P.M. Morse, K.U. Ingard, Theoretical Acoustics (McGraw-Hill, New York, 1968)Google Scholar
  12. 12.
  13. 13.
    J.L. Rose, Ultrasonic Waves in Solid Media (Cambridge University Press, Cambridge, 1999)Google Scholar
  14. 14.
    T.H. Gan, D.A. Hutchins, D.R. Billson, D.W. Schindel, Ultrasonics 39, 181 (2001)CrossRefGoogle Scholar
  15. 15.
    J.E. Michaels, S.J. Lee, A.J. Croxford, P.D. Wilcox, Ultrasonics 53, 265 (2013)CrossRefGoogle Scholar
  16. 16.
    R.F. Anastasi, E.I. Madaras, Pulse Compression Techniques for Laser Generated Ultrasound (Technical Report, NASA Langley Technical Report Server, 1999)Google Scholar
  17. 17.
    M. Aindow, R.J. Dewhurst, D.A. Hutchins, S.B. Palmer, J. Acoust. Soc. Am. 69(2), 449 (1981)ADSCrossRefGoogle Scholar
  18. 18.
    W. Arnold, B. Betz, B. Hoffmann, Appl. Phys. Lett. 47, 672 (1985)ADSCrossRefGoogle Scholar
  19. 19.
    D.A. Hutchins, F. Nadeau, P. Cielo, Can. J. Phys. 64, 1334 (1986)ADSCrossRefGoogle Scholar
  20. 20.
    B. Scruby, L.E. Drain, Laser Ultrasonics Techniques and Applications (Adam Hilger, Bristol, 1990)Google Scholar
  21. 21.
    A. Cavuto, M. Martarelli, G. Pandarese, G.M. Revel, E.P. Tomasini, Ultrasonics 55, 48 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Huiting Huan
    • 1
    • 2
  • Andreas Mandelis
    • 1
    • 2
    Email author
  • Bahman Lashkari
    • 2
  • Lixian Liu
    • 1
    • 2
  1. 1.School of Optoelectronic InformationUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Mechanical and Industrial Engineering, Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT)University of TorontoTorontoCanada

Personalised recommendations