Influence of Thermal Annealings in Argon on the Structural and Thermochromic Properties of \(\mathrm{MoO}_{3}\) Thin Films

  • M. A. ArvizuEmail author
  • M. Morales-Luna
  • M. Pérez-González
  • E. Campos-Gonzalez
  • O. Zelaya-Angel
  • S. A. Tomás


The effect of thermal annealing in an inert atmosphere (argon) on the structural and thermochromic properties of \(\hbox {MoO}_{3}\) thin films was investigated. \(\hbox {MoO}_{3}\) thin films were deposited by thermal evaporation in vacuum of \(\hbox {MoO}_{3}\) powders. X-ray diffraction patterns of the films showed the presence of the monoclinic Magneli phase \(\hbox {Mo}_{9}\hbox {O}_{26}\) for annealing temperatures above \(250\,{^{\circ }}\hbox {C}\). Absorbance spectra of the films annealed in argon indicated that their thermochromic response increases with the annealing temperature in the analyzed range (23 \({^{\circ }}\hbox {C}\)–300 \({^{\circ }}\hbox {C}\)), a result opposite to the case of thermal annealings in air, for which case the thermochromic response shows a maximum value around 200 \({^{\circ }}\)C–225 \({^{\circ }}\)C and decreases for higher temperatures. These results are explained in terms of a higher density of oxygen vacancies formed upon thermal treatments in inert atmospheres.


Color centers Magneli phases Molybdenum oxide Thermochromism Thin films Vapor deposition 



The technical assistance of E. Ayala, M. Guerrero, and A. García is acknowledged. This work was partially supported by Consejo Nacional de Ciencia y Tecnologia (CONACyT) under Projects No. 168605 and 205733.


  1. 1.
    T.H. Chiang, P.Y. Ho, S.Y. Chiu, A.C. Chao, J. Alloys Compd. 651, 106 (2015)CrossRefGoogle Scholar
  2. 2.
    E.A.F.I. Saad, J. Optoelectron. Adv. M. 7, 2743 (2005)Google Scholar
  3. 3.
    Y.-L. Cui, Y.-M. Pu, Y.-W. Hao, Q.-C. Zhuang, Russ. J. Electrochem. 51, 119 (2015)CrossRefGoogle Scholar
  4. 4.
    Y. He, J. Yao, J. Photoch, Photobiol. C 4, 125 (2003)CrossRefGoogle Scholar
  5. 5.
    C.G. Granqvist, Handbook of Inorganic Electrochromic Materials (Elsevier, Amsterdam, 1995)Google Scholar
  6. 6.
    S.K. Deb, J.A. Chopoorian, J. Appl. Phys. 37, 4818 (1966)ADSCrossRefGoogle Scholar
  7. 7.
    S.K. Deb, Proc. R. Soc. A 304, 211 (1968)ADSGoogle Scholar
  8. 8.
    M.A. Quevedo-Lopez, R. Ramirez-Bon, R.A. Orozco-Teran, O. Mendoza-Gonzalez, O. Zelaya-Angel, Thin Solid Films 343–344, 202 (1999)CrossRefGoogle Scholar
  9. 9.
    S.A. Tomás, M.A. Arvizu, O. Zelaya-Angel, P. Rodríguez, Thin Solid Films 518, 1332 (2009)ADSCrossRefGoogle Scholar
  10. 10.
    M.A. Arvizu, M. Morales-Luna, S.A. Tomás, O. Zelaya-Angel, P. Rodríguez, AIP Conf. Proc. 1420, 151 (2012)ADSCrossRefGoogle Scholar
  11. 11.
    M.A. Arvizu, S.A. Tomás, M. Morales-Luna, J. Santoyo-Salazar, J.O. Garcia-Torija, O. Zelaya-Angel, Int. J. Thermophys. 33, 2035 (2012)ADSCrossRefGoogle Scholar
  12. 12.
    L. Kihlborg, A. Magneli, Acta Chem. Scand. 9, 471 (1955)CrossRefGoogle Scholar
  13. 13.
    L. Kihlborg, Acta Chem. Scand. 13, 954 (1959)CrossRefGoogle Scholar
  14. 14.
    K. Khojier, S. Zolghadr, N. Zare, Int. J. Bio Inorg. Hybd. Nanomat. 1, 199 (2012)Google Scholar
  15. 15.
    B. Fultz, J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 3rd edn. (Springer, Heidelberg, 2008)Google Scholar
  16. 16.
    A. Klinbumrung, T. Thongtem, S. Thongtem, J. Nanomater. 2012, Article ID 930763 (2012)Google Scholar
  17. 17.
    M.A. Py, K.A. Maschke, Phys. B 105, 376 (1981)Google Scholar
  18. 18.
    M. Dieterle, G. Weinberg, G. Mestl, Phys. Chem. Chem. Phys. 4, 812 (2002)CrossRefGoogle Scholar
  19. 19.
    Y. Hiruta, M. Kitao, S. Yamada, Jpn. J. Appl. Phys. 23, 1624 (1984)ADSCrossRefGoogle Scholar
  20. 20.
    S.K. Deb, Sol. Energy Mater. Sol. Cells 92, 245 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • M. A. Arvizu
    • 1
    • 2
    Email author
  • M. Morales-Luna
    • 3
  • M. Pérez-González
    • 1
  • E. Campos-Gonzalez
    • 4
  • O. Zelaya-Angel
    • 1
  • S. A. Tomás
    • 1
  1. 1.Departamento de FísicaCentro de Investigación y de Estudios Avanzados del I.P.N., A.P. 14-740MéxicoMexico
  2. 2.Department of Engineering Sciences, The Ångström LaboratoryUppsala UniversityUppsalaSweden
  3. 3.Programa de Nanociencias y NanotecnologíaCentro de Investigación y de Estudios Avanzados del I.P.N., A.P. 14-740MéxicoMexico
  4. 4.Facultad de Química, MaterialesUniversidad Autónoma de QuerétaroQuerétaroMexico

Personalised recommendations