Beam Profile Improvement of a High-Power Diode Laser Stack for Optoacoustic Applications

  • Miguel SánchezEmail author
  • Sergio Rodríguez
  • Luca Leggio
  • Sandeep Gawali
  • Daniel Gallego
  • Horacio Lamela
Part of the following topical collections:
  1. 3rd Conference on Photoacoustic and Photothermal Theory and Applications


Recent advances in high-power diode lasers (HPDLs) technology allow their use as potential sources for optoacoustic (OA) applications, due to their high repetition rates (a few kHz), low costs and sizes. However, some OA applications require pulse energies in the order of mJ that cannot be provided by the only HPDLs (several \(\upmu \hbox {J}\)). The employment of diode laser bars (DLBs) and stacks (DLSs) significantly increases the energy per pulse up to several mJ, but they require more optical elements for collimation in fast and slow axes. In this work, we show an 808 nm DLS emitting optical nanosecond pulses with currents of \(\sim \)200 A and supplied by a customized current driver. We only collimate the beam in the fast axis by disposing the core of 200 \(\upmu \hbox {m}\) optical fibers as collimating lenses along each bar of the stack, and we discuss the improvement of the beam profile. The results demonstrate that the beam profile is notably improved with the optical fiber lenses, and a 6.4 mm \(\times \) 4.3 mm light spot is obtained by using a conventional focusing lens. Measurements report a total energy per pulse of \(630 \, \upmu \hbox {J}\) in the spot, considering a pulse width of 850 ns and a repetition rate of 1 kHz. Finally, we focus the light spot into an absorbing inclusion (graphene oxide) hosted in a semi-transparent phantom to generate and detect high OA signals \(({\sim }355 \hbox { mV}_{\mathrm{pp}})\). The results achieved demonstrate the capability of our DLS system to be applied in multispectral OA systems with final application in OA endoscopy and microscopy.


Fast axis collimation High-power diode laser stacks Optical fiber lenses Optoacoustics 



Diode laser bars


Diode laser stacks


European Space Agency


Fast axis collimation


High-power diode lasers


Light detection and ranging of laser imaging detection and ranging




Optoacoustic imaging


Optical parametric oscillators


Piezoelectric transducer


Slow axis collimation



A special acknowledgment has to be addressed to the ESA for the DLS provided. This research is part of OILTEBIA project (Optical Imaging and Laser TEchniques for BIomedical Applications), which is an Initial Training Network (ITN) funded by the European Community Seventh Framework Programme, Grant Agreement Number 317526.


  1. 1.
    H.F. Zhang, K. Maslov, G. Stoica, L.V. Wang, Nat. Biotechnol. 24, 848–851 (2006)CrossRefGoogle Scholar
  2. 2.
    T. Buma, J. Ye, T. Norris, S. Milas, M. Spisar, K. Hollmann, M. O’Donnell, J. Hamilton, S. Emelianov, L. Balogh, J. Baker Jr., J. Acoust. Soc. Am. 114, 2377 (2003)ADSCrossRefGoogle Scholar
  3. 3.
    V. Ntziachristos, J. Ripoll, L.V. Wang, R. Weissleder, Nat. Biotechnol. 23, 313–320 (2005)CrossRefGoogle Scholar
  4. 4.
    M. Xu, L.V. Wang, Rev. Sci. Instrum. 77, 041101 (2006)ADSCrossRefGoogle Scholar
  5. 5.
    L.V. Wang, Nat. Photonics 3, 503–509 (2009)ADSCrossRefGoogle Scholar
  6. 6.
    P. Beard, Inter. Focus 1, 602–631 (2011)Google Scholar
  7. 7.
    L.V. Wang, S. Hu, Science 335, 1458–1462 (2012)ADSCrossRefGoogle Scholar
  8. 8.
    R.O. Esenaliev, I.V. Larina, K.V. Larin, D.J. Deyo, M. Motamedi, D.S. Prough, Appl. Opt. 41, 4722–4731 (2002)ADSCrossRefGoogle Scholar
  9. 9.
    K.H. Song, C. Kim, K. Maslov, L.V. Wang, Eur. J. Radiol. 70, 227–231 (2009)CrossRefGoogle Scholar
  10. 10.
    T.J. Allen, P.C. Beard, Opt. Lett. 31, 3462–3464 (2006)ADSCrossRefGoogle Scholar
  11. 11.
    R.G.M. Kolkman, W. Steenbergen, T.G. van Leeuwen, Lasers Med. Sci. 21, 134–139 (2006)CrossRefGoogle Scholar
  12. 12.
    V. Cunningham, H. Lamela, in Proceedings of the SPIE, vol. 6191 (2006), p. 619106Google Scholar
  13. 13.
    C.-S. Friedrich, M.-C. Wawreczko, M.P. Mienkina, N.C. Gerhardt, G. Schmitz, M.R. Hofmann, in Proceedings of the SPIE, vol. 7177 (2009), p. 71772HGoogle Scholar
  14. 14.
    L.M. Zeng, G.D. Liu, D.W. Yang, X.R. Ji, Appl. Phys. Lett. 102, 053704 (2013)ADSCrossRefGoogle Scholar
  15. 15.
    T.H. Wang, S. Nandy, H.S. Salehi, P.D. Kumavor, Q. Zhu, Biomed. Opt. Express 5, 3053–3058 (2014)CrossRefGoogle Scholar
  16. 16.
    P.K. Upputuri, M. Pramanik, Biomed. Opt. Express 6, 4118–4129 (2015)CrossRefGoogle Scholar
  17. 17.
    M. Hempel, J.W. Tomm, F. La Mattina, I. Ratschinski, M. Schade, I. Shorubalko, M. Stiefel, H.S. Leipner, F.M. Kießling, T. Elsaesser, IEEE J. Sel. Top. Quantum Electron. 19, 1500508 (2013)ADSCrossRefGoogle Scholar
  18. 18.
    H. Li, F. Reinhardt, I. Chyr, J. Xu, K. Kuppuswamy, T. Towe, D. Brown, O. Romero, D. Liu, R. Miller, T. Nguyen, T. Crum, T. Truchan, E. Wolak, J. Mott, J. Harrison, in Proceedings of the SPIE, vol. 6876 (2008), p. 68760GGoogle Scholar
  19. 19.
    T. Possner, B. Messerschmidt, A. Kraeplin, V. Bluemel, B. Hoefer, P. Schreiber, in Proceedings of the SPIE, vol. 3952 (2000), p. 392Google Scholar
  20. 20.
    Q. Deng, C. Du, C. Wang, C. Zhou, X. Dong, Y. Liu, T. Zhou, in Proceedings of the SPIE, vol. 5636 (2005), p. 666Google Scholar
  21. 21.
    R. Geng, Y. Lu, F. Zhang, C. Liu, C. Wang, S. Jian, Opt. Rev. 17, 103–107 (2010)CrossRefGoogle Scholar
  22. 22.
    S.H. Ghasemi, M.R. Hantehzadeh, J. Sabbaghzadeh, D. Dorranian, M. Lafooti, V. Vatani, R. Rezaei-Nasirabad, A. Hemmati, A.A. Amidian, S.A. Alavian, Appl. Opt. 50, 2927–2930 (2011)ADSCrossRefGoogle Scholar
  23. 23.
    P. Gelsinger, NASA Tech Briefs (2008), pp. 33–34Google Scholar
  24. 24.
    J. Tan, F. Wang, J. Cui, Opt. Express 18, 2925–2933 (2010)ADSCrossRefGoogle Scholar
  25. 25.
    L. Leggio, D.C. Gallego, S.B. Gawali, E. Dadrasnia, M. Sánchez, S. Rodríguez, M. González, G. Carpintero, M. Osiński, H. Lamela, in Proceedings of the SPIE, vol. 9708 (2016), p. 97083MGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Optoelectronics and Laser Technology Group (GOTL), Department of Electronic TechnologyUniversity Carlos III of MadridLeganésSpain

Personalised recommendations