Advertisement

Rules of Emissivity Sample Choice in Multi-wavelength Pyrometry

  • M. Liang
  • B. Sun
  • X. SunEmail author
  • J. Xie
  • C. Yu
Article

Abstract

Since the theory for emissivity sample (example) is not clear, there exists unavoidable blindness in the sample choice for the true temperature determination (create emissivity samples using an assumption to calculate the true temperature according to brightness temperature and wavelength) in multi-wavelength pyrometry, resulting in considerable computational complexity and slow computing speed. In this article, the rules of the emissivity sample were first discovered through the theoretical analysis of the relationship between brightness temperature and emissivity, which provide a theoretical basis for the emissivity sample choice. Furthermore, the rules can reduce the sample size (amount) and improve the calculation speed. The effectiveness of the proposed rules was verified by measuring the true temperature of a solid rocket engine plume, in which the rules were applied to effectively select emissivity samples. The experimental results demonstrate that the computing speed of the true temperature determination can be improved by 5.73% to 48.64%.

Keywords

Brightness temperature Emissivity sample Multi-wavelength pyrometry True temperature 

Notes

Acknowledgements

This work was supported by the National Key Scientific Instruments and Equipment Development Special Fund (2013YQ470767).

References

  1. 1.
    E. Vuelban, F. Girard, M. Battuello, P. Nemeček, M. Maniur, P. Pavlásek, T. Paans, Int. J. Thermophys. 36(7), 1545 (2015)ADSCrossRefGoogle Scholar
  2. 2.
    T. Fu, J. Liu, J. Tang, M. Duan, H. Zhao, C. Shi, Infrared Phys. Technol. 66, 49 (2014)ADSCrossRefGoogle Scholar
  3. 3.
    X. Sun, G. Yuan, J. Dai, Z. Chu, Int. J. Thermophys. 26(4), 1255 (2005)ADSCrossRefGoogle Scholar
  4. 4.
    F. Girard, M. Battuello, M. Florio, Int. J. Thermophys. 35(6), 1401 (2014)ADSCrossRefGoogle Scholar
  5. 5.
    Y. Song, X. Sun, H. Tang, Chin. Opt. Lett. 5(8), 457 (2007)ADSGoogle Scholar
  6. 6.
    J. Xing, S. Cui, W. Qi, F. Zhang, X. Sun, W. Sun, Measurement 67, 92 (2015)CrossRefGoogle Scholar
  7. 7.
    H. Wang, D. Chen, G. Wang, Y. Long, J. Luo, L. Liu, Q. Yang, Measurement 46(10), 4023 (2013)CrossRefGoogle Scholar
  8. 8.
    T. Duvaut, Infrared Phys. Technol. 51(4), 292 (2008)ADSCrossRefGoogle Scholar
  9. 9.
    T. Duvaut, D. Georgeault, J. Beaudoin, Infrared Phys. Technol. 36(7), 1089 (1995)ADSCrossRefGoogle Scholar
  10. 10.
    C.D. Wen, Int. J. Heat Mass Transfer 53(9), 2035 (2010)CrossRefGoogle Scholar
  11. 11.
    J. Gardner, High Temp. High Press. 12(6), 699 (1980)Google Scholar
  12. 12.
    P.B. Coates, High Temp. High Press. 20(4), 433 (1988)Google Scholar
  13. 13.
    C. Yang, D. Zhao, J. Dai, IEEE Trans. Instrum. Meas. 54(6), 2549 (2005)CrossRefGoogle Scholar
  14. 14.
    S. Kun, S. Xiao-gang, Y. Xiao-yang, S. Xiao-ming, Spectrosc. Spect. Anal. 33(6), 1719 (2013)Google Scholar
  15. 15.
    P. Ni, R. More, H. Yoneda, F. Bieniosek, Rev. Sci. Instrum. 83(12), 123501 (2012)ADSCrossRefGoogle Scholar
  16. 16.
    D.Y. Svet, S. Sergeev, Meas. Tech. 54(11), 1273 (2012)CrossRefGoogle Scholar
  17. 17.
    P. Coppa, G. Ruffino, A. Spena, High Temp. High Press. 20(5), 479 (1988)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Harbin Institute of TechnologyHarbinChina
  2. 2.Xi’an Aerospace Power Institute of Measurement and Control TechnologyXi’anChina

Personalised recommendations