Thermal Conductivity of Pyroclastic Soil (Pozzolana) from the Environs of Rome

  • M. L. McCombie
  • V. R. TarnawskiEmail author
  • G. Bovesecchi
  • P. Coppa
  • W. H. Leong


The paper reveals the experimental procedure and thermo-physical characteristics of a coarse pyroclastic soil (Pozzolana), from the neighborhoods of Rome, Italy. The tested samples are comprised of 70.7 % sand, 25.9 % silt, and 3.4 % clay. Their mineral composition contained 38 % pyroxene, 33 % analcime, 20 % leucite, 6 % illite/muscovite, 3 % magnetite, and no quartz content was noted. The effective thermal conductivity of minerals was assessed to be about \(2.14\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\). A transient thermal probe method was applied to measure the thermal conductivity (\(\lambda \)) over a full range of the degree of saturation \((S_{\mathrm{r}})\), at two porosities (n) of 0.44 and 0.50, and at room temperature of about \(25\,^{\circ }\hbox {C}\). The \(\lambda \) data obtained were consistent between tests and showed an increasing trend with increasing \(S_{\mathrm{r}}\) and decreasing n. At full saturation (\(S_{\mathrm{r}}=1\)), a nearly quintuple \(\lambda \) increase was observed with respect to full dryness (\(S_{\mathrm{r}}=0\)). In general, the measured data closely followed the natural trend of \(\lambda \) versus \(S_{\mathrm{r}}\) exhibited by published data at room temperature for other unsaturated soils and sands. The measured \(\lambda \) data had an average root-mean-squared error (RMSE) of \(0.007\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) and \(0.008\,\hbox {W}{\cdot } \hbox {m}^{-1}{\cdot } \hbox {K}^{-1}\) for n of 0.50 and 0.44, respectively, as well as an average relative standard deviation of the mean at the 95 % confidence level \((\hbox {RSDM}_{0.95})\) of 2.21 % and 2.72  % for n of 0.50 and 0.44, respectively.


Mineral composition Modeling Pozzolana Thermal conductivity Thermal conductivity probe Tuff 



The authors wish to express sincere gratitude to Bavarian Environment Agency (Hoff, Germany), for conducting XRD/XRF analyses. Additionally, sincere thanks are due to Prof. G. Viggiani and M. Scaparazzi for their assistance in collecting Pozzolana samples. Finally, the authors would like to thank Mr. Owen Brown from Bedford Institute of Oceanography (Canada) for carrying out the textural analysis of the tested Pozzolana sample.


  1. 1.
    V.R. Tarnawski, T. Momose, W.H. Leong, G. Bovesecchi, P. Coppa, Int. J. Thermophys. 30, 949 (2009)ADSCrossRefGoogle Scholar
  2. 2.
    E. Cattoni, M. Cecconi, V. Pane, Bull. Eng. Geol. Environ. 66, 403 (2007)Google Scholar
  3. 3.
    P. De Vita, A. C. Angrisani, E. Di Clemente, Ital. J. Eng. Geol. Environ. 2, 5 (2008)Google Scholar
  4. 4.
    M. Cecconi, M. Scaparazzi, G.M.B. Viggiani, Bull. Eng. Geol Environ. 69, 185 (2010)Google Scholar
  5. 5.
    G. Bovesecchi, P. Coppa, Int. J. Thermophys. 34, 1962 (2013)ADSCrossRefGoogle Scholar
  6. 6.
    S. Sanchez-Moral, L. Luque, J.-C. Canaveras, V. Soler, J. Garciaguinea, A. Aparicio, Lime Pozzolana mortars in Roman Catacombs: composition, structures and restoration. Cem. Concr. Res. 35, 1555 (2005)CrossRefGoogle Scholar
  7. 7.
    P.H. Cochran, L. Boersma, C.T. Youngberg, Thermal properties of a pumice soil. SSSAJ 31, 454 (1967)CrossRefGoogle Scholar
  8. 8.
    E. Ashworth, The variation of the thermal conductivity of tuff with moisture. experimental results and proposed model. in Proceedings of 33rd U.S. Symposium on Rock Mechanics, ed. by J.R. Tillerson, W.R. Wawersik. Santa Fe, New Mexico (1992)Google Scholar
  9. 9.
    Y. Yamazaki, F. Tsuchiya, O. Tsuji, Trans. JSIRRE 226, 497 (2003)Google Scholar
  10. 10.
    J. Schönenberger, T. Momose, B. Wagner, W.H. Leong, V. R. Tarnawski, Int. J. Thermophys. 33, 342 (2012)Google Scholar
  11. 11.
    Ki-iti Horai, Thermal conductivity of rock forming minerals. J. Geophys. Res. 76, 1278–1308 (1971)ADSCrossRefGoogle Scholar
  12. 12.
    F. Brigaud, G. Vasseur, Mineralogy, porosity and fluid control on thermal conductivity of sedimentary rocks. Geophys. J. 98, 525–542 (1989)ADSCrossRefGoogle Scholar
  13. 13.
    C. Clauser, E. Huenges, Thermal conductivity of rocks and minerals, in Rock Physics and Phase Relations: A Handbook of Physical Constants, American Geophysical Union, vol. 3, ed. by T.J. Ahrens (American Geophysical Union, Washington, DC, 1995), p. 105Google Scholar
  14. 14.
    O. Johansen, Thermal conductivity of soils. Ph.D. thesis, Trondheim, Norway 1975. (CRREL Draft Translation 637, 1977). ADA 044002Google Scholar
  15. 15.
    B.R. Blake, K.H. Hartge, Particle density, in ASA Monograph No 9, Part 1, ed. by A. Klute (1906)Google Scholar
  16. 16.
    V.R. Tarnawski, M. L. McCombie, T. Momose, I. Sakaguchi, W.H. Leong, Int. J. Thermophys. 34, 1130 (2013)Google Scholar
  17. 17.
    V.R. Tarnawski, T. Momose, W.H. Leong, Int. J. Thermophys. 32, 984 (2011)ADSCrossRefGoogle Scholar
  18. 18.
    L. Kirkup, R.B. Frenkel, An Introduction to Uncertainty in Measurement Using the GUM Guide to the Uncertainty in Measurement (Cambridge University Press, Cambridge, 2006)CrossRefGoogle Scholar
  19. 19.
    D.A. De Vries, in Thermal Properties of Soils, ed. by W.R. van Wijk (North-Holland, Amsterdam, 1963)Google Scholar
  20. 20.
    F. Gori, On the theoretical prediction of the effective thermal conductivity of bricks. in Proceedings of the 8th International Heat Transfer Conference, II (1986)Google Scholar
  21. 21.
    S. Lu, T. Ren, Y. Gong, R. Horton, An improved model for predicting soil thermal conductivity from water content at room temperature. Soil Sci. Soc. Am. 71, 8 (2007)CrossRefGoogle Scholar
  22. 22.
    V. Tarnawski, T. Momose, W. H. Leong, B.Wagner, Performance evaluation of soil thermal conductivity models, in Proceedings of ASME-ATI-UIT Conference on Thermal and Environmental Issues in Energy Systems, Sorrento, Italy (2010)Google Scholar
  23. 23.
    V.R. Tarnawski, F. Gori, Int. J. Energy Res. 26, 143 (2002)CrossRefGoogle Scholar
  24. 24.
    F. Gori, S. Corasaniti, Detection of a dry-frozen boundary inside Martian regolith. Planet. Space Sci. 56, 1093 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    F. Gori, S. Corasaniti, New model to evaluate the effective thermal conductivity of three-phase soils. Int. Commun. Heat Mass Transf. 47, 1 (2013)CrossRefGoogle Scholar
  26. 26.
    F. Gori, S. Corasaniti, Effective thermal conductivity of three-phase soils. in Proceedings of The ASME International Mechanical Engineering Congress and Exposition 2012, Fluid and Heat Transfer, Houston, Texas, USA, vol 7 Part D, p. 2369 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • M. L. McCombie
    • 1
  • V. R. Tarnawski
    • 1
    Email author
  • G. Bovesecchi
    • 2
  • P. Coppa
    • 2
  • W. H. Leong
    • 3
  1. 1.Division of EngineeringSaint Mary’s UniversityHalifaxCanada
  2. 2.Department of Industrial EngineeringUniversity of Rome “Tor Vergata”RomeItaly
  3. 3.Department of Mechanical and Industrial EngineeringRyerson UniversityTorontoCanada

Personalised recommendations