Evidence for Argon Content in Pure Oxygen from Thermal Data

  • Peter P. M. SteurEmail author
  • Inseok Yang
  • Franco Pavese


Since many years it is known that argon impurities in oxygen change the temperature of the oxygen triple point by \(+12 \hbox { K}{\cdot }\mathrm{mol}^{-1}\) (positive, while most impurities decrease the temperature) without any effect on the melting range of this transition, for the impurity concentrations usually encountered in nominally pure gases. It has been hypothesized that thermal measurements on the \(\alpha -\beta \) solid-to-solid transition at 23.8 K or the \(\beta -\gamma \) solid-to-solid transition at 43.8 K may give reliable evidence regarding the argon content. However, such measurements require very long times for full completion of each transition (with prohibitive costs if liquid helium is used) and for the \(\alpha -\beta \) solid-to-solid transition the heat pulse method cannot be applied reliably. The availability of closed-cycle refrigerators permits the first obstacle to be surmounted. The automatic system earlier developed at INRIM during the EU Multicells project and used extensively for the project on the isotopic effect in neon is perfectly suited for such measurements. Thus, the uncertainties of the temperature measurements are similar to those obtained previously (of the order of 0.1 mK or less). Three argon-in-oxygen mixtures were prepared gravimetrically and certified at KRISS, just as was previously done for the work on the neon isotopic compositions. Results of continuous-current measurements on the \(\alpha -\beta \) solid-to-solid transition, along with the triple-point data obtained with the heat pulse method, are presented for one cell with a known doped argon content, to be compared with similar data from a cell with oxygen of very high purity. In addition, some preliminary data for the \(\beta -\gamma \) solid-to-solid transition are given. The measurements on the mixture with the highest argon content, about \(1002\, \upmu \hbox {mol}{\cdot } \mathrm{mol}^{-1}\), imply a (linear) sensitivity of \((116 \pm 7) \hbox {K}{\cdot }\mathrm{mol}^{-1}\) for the \(\alpha -\beta \) transition. This sensitivity may be different at much lower argon contents, and follow-up measurements with the other (smaller) mixtures will shed light on the linearity of this dependence.


Argon impurity Fixed points ITS-90 Oxygen Triple point 


  1. 1.
    A. Eucken, Verh. Dtsch. Phys. Ges. 18, 4 (1916)Google Scholar
  2. 2.
    H.J. Hoge, J. Res. Natl. Bur. Stand. 44, 321 (1950)CrossRefGoogle Scholar
  3. 3.
    M.P. Orlova, in Temperature, Its Measurement and Control in Science and Industry, vol. 3, ed. by C.M. Herzfeld (Reinhold, New York, 1962), pp. 179–184Google Scholar
  4. 4.
    R. Muijlwijk, M. Durieux, H. van Dijk, Physica 43, 475 (1969)ADSCrossRefGoogle Scholar
  5. 5.
    W.R.G. Kemp, C.P. Pickup, in Temperature, Its Measurement and Control in Science and Industry, vol. 4, ed. by H.H. Plumb (Instrument Society of America, Pittsburgh, 1972). pp. 217–224Google Scholar
  6. 6.
    J. Ancsin, in Temperature Measurement 1975, Institute of Physics Conf. Series No. 26 (1975), pp. 57–64Google Scholar
  7. 7.
    E.L. Pace, R.L. Bivens, J. Chem. Phys. 53, 748 (1970)ADSCrossRefGoogle Scholar
  8. 8.
    J. Cowan, R.C. Kemp, W.R.G. Kemp, Metrologia 12, 87 (1976)ADSCrossRefGoogle Scholar
  9. 9.
    K.H. Kang, K.H. Kim, B.J. Kim, M.J. Kim, C. Rhee, in Proceedings Tempmeko’96, ed. by P. Marcarino (Levrotto & Bella, Torino, 1997), pp. 101–104Google Scholar
  10. 10.
    K.H. Kang, C.H. Song, Y.G. Kim, K.S. Gam (KRISS), U.S. Patent US006324894B1—Device and method for measuring argon impurity by utilizing the triple point and the \(\gamma -\beta \) transition temperatures of oxygen (2001)Google Scholar
  11. 11.
    L. Lipinski, A. Szmyrka-Grzebyk, H. Manuszkiewicz, Cryogenics 36, 921 (1996)ADSCrossRefGoogle Scholar
  12. 12.
    L. Lipinski, A. Szmyrka-Grzebyk, H. Manuszkiewicz, P.P.M. Steur, F. Pavese, in Proceedings Tempmeko’96, ed. by P. Marcarino (Levrotto & Bella, Torino, 1997), pp. 105–109Google Scholar
  13. 13.
    A. Szmyrka-Grzebyk, L. Lipinski, H. Manuszkiewicz, J. Low Temp. Phys. 111, 399 (1998)ADSCrossRefGoogle Scholar
  14. 14.
    L. Lipinski, A. Kowal, A. Szmyrka-Grzebyk, H. Manuszkiewicz, P.P.M. Steur, I. Peroni, F. Sparasci, F. Pavese, 2nd International Seminar and Workshop on Low Temperature Thermometry, Wroclaw, Poland (2003), pp. 119–126Google Scholar
  15. 15.
    A. Szmyrka-Grzebyk, A. Kowal, L. Lipinski, H. Manuszkiewicz, P.P.M. Steur, F. Pavese, AIP Conf. Proc. 1552, 204–208 (2013). doi: 10.1063/1.4819540 ADSCrossRefGoogle Scholar
  16. 16.
    R. LeSar, R.D. Etters, Phys. Rev. B 37, 5364 (1988)ADSCrossRefGoogle Scholar
  17. 17.
    B. Kuchta, T. Luty, R.J. Meier, J. Phys. C Solid State Phys. 20, 585 (1987)ADSCrossRefGoogle Scholar
  18. 18.
    C.S. Barrett, L. Meyer, J. Wasserman, Phys. Rev. 163, 851 (1967)ADSCrossRefGoogle Scholar
  19. 19.
    F. Pavese, D. Ferri, Adv. Cryog. Engine 33, 1039 (1988)Google Scholar
  20. 20.
    Yu.A. Freiman, H.J. Jodl, Phys. Rep. 401, 1–228 (2004)Google Scholar
  21. 21.
    F. Pavese, Metrologia 46, 47 (2009)ADSCrossRefGoogle Scholar
  22. 22.
    P.P.M. Steur, J.S. Kim, D. Giraudi, F. Pavese, J. Chem. Thermodyn. 60, 87 (2013). doi: 10.1016/j.jct.2013.01.011 CrossRefGoogle Scholar
  23. 23.
    I. Yang, J.B. Lee, D.M. Moon, J.S. Kim, Preparation of primary reference material of argon in oxygen by the gravimetric method for application to thermometry. Metrologia (submitted to)Google Scholar
  24. 24.
    F. Pavese, D. Ferri, I. Peroni, A. Pugliese, P.P.M. Steur, B. Fellmuth, D.I. Head, L. Lipinski, A. Peruzzi, A. Szmyrka-Grzebyk, L. Wolber, AIP Conf. Proc. 684, 173–178 (2003)ADSCrossRefGoogle Scholar
  25. 25.
    F. Pavese, P.P.M. Steur, N. Bancone, D. Ferri, D. Giraudi, Metrologia 47, 499 (2010)ADSCrossRefGoogle Scholar
  26. 26.
    B. Fellmuth, P. Seifert, H. Rudloff, in Proceedings Tempmeko’96, ed. by P. Marcarino (Levrotto & Bella, Torino, 1997), pp. 93–98Google Scholar
  27. 27.
    A.G. Steele, B. Fellmuth, D.I. Head, Y. Hermier, K.H. Kang, P.P.M. Steur, W.L. Tew, Metrologia 39, 551–571 (2002)ADSCrossRefGoogle Scholar
  28. 28.
    K.D. Hill, T. Nakano, P. Steur, Metrologia 52, 03003 (2015). Tech SupplADSCrossRefGoogle Scholar
  29. 29.

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Peter P. M. Steur
    • 1
    Email author
  • Inseok Yang
    • 2
  • Franco Pavese
    • 3
  1. 1.Istituto Nazionale di Ricerca MetrologicaTorinoItaly
  2. 2.Korea Research Institute of Standards and ScienceDaejeonRepublic of Korea
  3. 3.Instytut Niskich Temperatur i Badań Strukturalnych PANWrocławPoland

Personalised recommendations