Thermal Effusivity Determination of Metallic Films of Nanometric Thickness by the Electrical Micropulse Method
- 175 Downloads
Abstract
The thermal effusivity of gold, aluminum, and copper thin films of nanometric thickness (20 nm to 200 nm) was investigated in terms of the films’ thickness. The metallic thin films were deposited onto glass substrates by thermal evaporation, and the thermal effusivity was estimated by using experimental parameters such as the specific heat, thermal conductivity, and thermal diffusivity values obtained at room conditions. The specific heat, thermal conductivity, and thermal diffusivity values of the metallic thin films are determined with a methodology based on the behavior of the thermal profiles of the films when electrical pulses of few microseconds are applied at room conditions. For all the investigated materials, the thermal effusivity decreases with decreased thickness. The thermal effusivity values estimated by the presented methodology are consistent with other reported values obtained under vacuum conditions and more elaborated methodologies.
Keywords
Nanocalorimetry Specific heat Thermal conductivity Thermal effusivityNotes
Acknowledgements
Authors thank to J. E. Corona and Mauricio Romero for their technical support. Special thanks to Dr. A.I. Oliva-Avilés for the revision and suggestions on the manuscript.
References
- 1.W. Ma, X. Zhang, Int. J. Heat Mass Transf. 58, 639–651 (2013)CrossRefGoogle Scholar
- 2.H.G. Craighead, Science 290, 1532–1535 (2000)ADSCrossRefGoogle Scholar
- 3.B. Feng, Z. Li, X. Zhang, Thin Solid Films 517, 2803–2807 (2009)ADSCrossRefGoogle Scholar
- 4.H.D. Wang, J.H. Liu, X. Zhang, Z.Y. Guo, K. Takahashi, Heat Mass Transf. 47, 893–898 (2011)ADSCrossRefGoogle Scholar
- 5.R. Bachmann, F.J. DiSalvo, T.H. Geballe, R.L. Greene, R.E. Howard, C.N. King, H.C. Kirsch, K.N. Lee, R.E. Schwall, H.U. Thomas, R.B. Zubeck, Rev. Sci. Instrum. 43, 205–214 (1972)ADSCrossRefGoogle Scholar
- 6.P. Nath, K.L. Chopra, Thin Solid Films 18, 29–37 (1973)ADSCrossRefGoogle Scholar
- 7.C.A. Paddock, G.L. Eesly, J. Appl. Phys. 60, 285–290 (1986)ADSCrossRefGoogle Scholar
- 8.K. Hatori, N. Taketoshi, T. Baba, H. Ohta, Rev. Sci. Instrum. 76, 114901–114907 (2005)ADSCrossRefGoogle Scholar
- 9.D.G. Cahill, Rev. Sci. Instrum. 61, 802–808 (1990)ADSCrossRefGoogle Scholar
- 10.T. Kemp, T.A.S. Srinivas, R. Fetting, W. Ruppel, Rev. Sci. Instrum. 66, 176–181 (1995)ADSCrossRefGoogle Scholar
- 11.R.T. Swimm, Appl. Phys. Lett. 42, 955–957 (1983)ADSCrossRefGoogle Scholar
- 12.J. Philip, Rev. Sci. Instrum. 67, 3621–3623 (1996)ADSCrossRefGoogle Scholar
- 13.P. Charpentier, F. Lepoutre, L. Bertrand, J. Appl. Phys. 53, 608–614 (1982)ADSCrossRefGoogle Scholar
- 14.J.H. Cho, J.A. Lim, J.T. Han, H.W. Jang, J.L. Lee, K. Cho, Appl. Phys. Lett. 86, 171906 (2005)ADSCrossRefGoogle Scholar
- 15.R.D. Maldonado, A.I. Oliva, H.G. Riveros, Surf. Rev. Lett. 13, 557–565 (2006)ADSCrossRefGoogle Scholar
- 16.J.M. Lugo, V. Rejon, A.I. Oliva, in in 9th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), IEEE Publication, Piscataway, 2012), pp. 1–5Google Scholar
- 17.J.M. Lugo, A.I. Oliva, H.G. Riveros, O. Ceh, in in 7th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE Publication, Piscataway, 2010), pp. 504–509Google Scholar
- 18.J.M. Lugo, J.E. Corona, A.I. Oliva, in in 10th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), (IEEE Publication, Piscataway, 2013), pp. 375–379Google Scholar
- 19.
- 20.D. Halliday, R. Resnick, K. Krane, Physics, 4th edn. (Wiley, Hoboken, 1992)Google Scholar
- 21.A.I. Oliva, J.M. Lugo, Int. J. Thermophys. 37, 35–45 (2016)ADSCrossRefGoogle Scholar
- 22.J.M. Lugo, A.I. Oliva, J. Thermophys. Heat Transf. 30, 452–460 (2015)CrossRefGoogle Scholar
- 23.J. Hartmann, P. Voigt, M. Reichling, J. Appl. Phys. 81, 2966–2972 (1997)ADSCrossRefGoogle Scholar
- 24.N. Taketoshi, T. Baba, A. Ono, Meas. Sci. Technol. 12, 2064–2073 (2001)ADSCrossRefGoogle Scholar
- 25.J.S. Jin, J.S. Lee, O. Kwon, Appl. Phys. Lett. 92, 171910–171913 (2008)ADSCrossRefGoogle Scholar
- 26.F. Kelemen, Thin Solid Films 36, 199–203 (1976)ADSCrossRefGoogle Scholar
- 27.J.M. Camacho, A.I. Oliva, Thin Solid Films 515, 1881–1885 (2006)ADSCrossRefGoogle Scholar
- 28.T. Yamane, Y. Mori, S. Katayama, M. Todoki, J. Appl. Phys. 82, 1153–1156 (1997)ADSCrossRefGoogle Scholar
- 29.J.M. Lugo, C. Ayora, V. Rejon, A.I. Oliva, Thin Solid Films 585, 24–30 (2015)ADSCrossRefGoogle Scholar
- 30.J.M. Lugo, V. Rejon, A.I. Oliva, J. Heat Transf. 137, 051601–0516011 (2015)CrossRefGoogle Scholar
- 31.S.L. Lai, G. Ramanath, L.H. Allen, P. Infante, Appl. Phys. Lett. 70, 43–45 (1997)ADSCrossRefGoogle Scholar
- 32.J. Yu, Z. Thang, F. Zhang, H. Ding, Z. Huang, J. Heat Transf. 132, 012403–012406 (2010)CrossRefGoogle Scholar
- 33.J. Yu, Z.A. Tang, F.T. Zhang, G.F. Wei, L.D. Wang, Chin. Phys. Lett. 22, 2429–2432 (2005)ADSCrossRefGoogle Scholar
- 34.E. Marin, Phys. Teach. 44, 432–434 (2006)ADSCrossRefGoogle Scholar
- 35.P.J. McCluskey, J.J. Vlassak, Thin Solid Films 518, 7093–7106 (2010)ADSCrossRefGoogle Scholar
- 36.J. Martan, N. Semmar, C. Leborgne, E. Le Menn, J. Mathias, Appl. Surf. Sci. 247, 57–63 (2005)ADSCrossRefGoogle Scholar