Measurements of the Temperature-Dependent Total Hemispherical Emissivity Using an Electrostatic Levitation Facility

  • A. K. GangopadhyayEmail author
  • K. F. Kelton


Among the three fundamental processes of heat transfer (conduction, convection, and radiation), radiation is the most dominant at high temperatures. The total hemispherical emissivity is an important property that determines the amount of heat loss by radiation. Unfortunately, the emissivity, especially its temperature dependence \((\varepsilon (T))\), is unknown for most materials. Here, we demonstrate the feasibility of measuring \(\varepsilon (T)\) using an electrostatic levitation (ESL) technique that allows such measurements to be made on levitated solid and liquid samples in a contamination-free, high-vacuum environment. The \(\varepsilon (T)\) for solid Ni and liquid \(\hbox {Zr}_{60}\hbox {Al}_{10}\hbox {Cu}_{18}\hbox {Ni}_{9}\hbox {Co}_{3}\) from these measurements is consistent with the existing literature data.


Emissivity Electrostatic levitation Liquids Glasses Solids 



This work was partially supported by NASA under Grants NNX10AU19G and NNX16AB52G. Any opinions, finding, and conclusions or recommendations expressed in this manuscript are those of the author(s) and do not necessarily reflect the views of NASA. We would like to thank C. E. Pueblo for technical help.


  1. 1.
    G.L. Zuppardo, K.G. Ramanathan, J. Opt. Soc. Am. 61, 1607 (1971)ADSCrossRefGoogle Scholar
  2. 2.
    K.G. Ramanathan, S.H. Yen, J. Opt. Soc. Am. 67, 32 (1977)ADSCrossRefGoogle Scholar
  3. 3.
    R. Smalley, A.J. Sievers, J. Opt. Soc. Am. 68, 1516 (1978)ADSCrossRefGoogle Scholar
  4. 4.
    R. Roger, S.H. Yen, K.G. Ramanathan, J. Opt. Soc. Am. 69, 1384 (1979)ADSCrossRefGoogle Scholar
  5. 5.
    G.L. Abbott, in Measurement of Thermal Radiation Properties of Solids, ed. by J. C. Richmond, (NASA SP-31, 1963), p.293Google Scholar
  6. 6.
    Y.S. Touloukian, D.P. Dewitt, Thermophysical Properties of Matter, vol. 7 (Plenum Press, New York-Washington, 1970)Google Scholar
  7. 7.
    P.-F. Paradis, T. Ishikawa, S. Yoda, Int. J. Thermophys. 24, 239 (2003)CrossRefGoogle Scholar
  8. 8.
    S. Krishnan, P.C. Nordine, Phys. Rev. B 47, 11780 (1993)ADSCrossRefGoogle Scholar
  9. 9.
    S. Krishnan, C.D. Anderson, P.C. Nordine, Phys. Rev. B 49, 3161 (1994)ADSCrossRefGoogle Scholar
  10. 10.
    J.L. McClure, K. Boboridis, A. Cezairliyan, Int. J. Thermophys. 20, 1137 (1999); ibid 20, 1149 (1999)Google Scholar
  11. 11.
    H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)Google Scholar
  12. 12.
    C. Davisson, J.R. Weeks, J. Opt. Soc. Am. 8, 581 (1924)ADSCrossRefGoogle Scholar
  13. 13.
    W.J. Parker, G.C. Abbott, Symposium on Thermal Radiation of Solids, ed. by S. Katzoff, (NASA SP-55), p. 11 (1965)Google Scholar
  14. 14.
    A.J. Sievers, J. Opt. Soc. Am. 68, 1505 (1978)ADSCrossRefGoogle Scholar
  15. 15.
  16. 16.
    W.-K. Rhim, M. Collender, M.T. Hyson, W.T. Simms, D.D. Elleman, Rev. Sci. Instrum. 56, 307 (1985)ADSCrossRefGoogle Scholar
  17. 17.
    A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, R.W. Hyers, Rev. Sci. Instrum. 76, 073901 (2005)Google Scholar
  18. 18.
    N.A. Mauro, K.F. Kelton, Rev. Sci. Instrum. 82, 035114 (2011)Google Scholar
  19. 19.
    K.E. Grey, Proc. R. Soc. A 145, 855 (1934)Google Scholar
  20. 20.
    R.E. Pawel, E.E. Stansbury, J. Phys. Chem. Sol. 26, 607 (1965)ADSCrossRefGoogle Scholar
  21. 21.
    R.K. Wunderlich, H.-J. Fecht, Mater. Trans. 42, 565 (2001)CrossRefGoogle Scholar
  22. 22.
    D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer, Int. Mat. Rev. 38, 273 (1993)CrossRefGoogle Scholar
  23. 23.
    D.P. Verret, K.G. Ramanathan, J. Opt. Soc. Am. 68, 1167 (1978)ADSCrossRefGoogle Scholar
  24. 24.
    H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, J. Appl. Phys. 104, 054901 (2008)ADSCrossRefGoogle Scholar
  25. 25.
    R.K. Wunderlich, H.-J. Fecht, Mater. Sci. Tech. 16, 402 (2005)ADSGoogle Scholar
  26. 26.
    I. Egry, A. Diefenbach, W. Dreier, J. Piller, Int. J. Thermophys. 22, 569 (2001)CrossRefGoogle Scholar
  27. 27.
    J.C. Bendert, M.E. Blodgett, A.K. Gangopadhyay, K.F. Kelton, Appl. Phys. Lett. 102, 211913 (2013)ADSCrossRefGoogle Scholar
  28. 28.
    X.L. Lin, W.L. Johnson, W.-K. Rhim, JIM. 38, 473 (1997)Google Scholar
  29. 29.
    S.X. Cheng, Expt. Therm. Fluid Sci. 2, 165 (1989)CrossRefGoogle Scholar
  30. 30.
    N.A. Mauro, A.J. Vogt, K.S. Derendorf, M.L. Johnson, G.E. Rustan, D.G. Quirinale, A. Kreyssig, K.A. Lokshin, J.C. Neuefeind, Xun-Li Wang Ke An, A.I. Goldman, T. Egami, K.F. Kelton, Rev. Sci. Instrum. 87, 013904 (2016)ADSCrossRefGoogle Scholar
  31. 31.
    M.E. Blodgett, A.K. Gangopadhyay, K.F. Kelton, Int. J. Thermophys. 36, 701 (2015)ADSCrossRefGoogle Scholar
  32. 32.
    A.K. Gangopadhyay, J.C. Bendert, N.A. Mauro, K.F. Kelton, J. Phys.: Condens. Matter 24, 375102 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Physics, Institute of Materials Science and EngineeringWashington University in St. LouisSt. LouisUSA

Personalised recommendations