Measurements of the Temperature-Dependent Total Hemispherical Emissivity Using an Electrostatic Levitation Facility
- 256 Downloads
- 2 Citations
Abstract
Among the three fundamental processes of heat transfer (conduction, convection, and radiation), radiation is the most dominant at high temperatures. The total hemispherical emissivity is an important property that determines the amount of heat loss by radiation. Unfortunately, the emissivity, especially its temperature dependence \((\varepsilon (T))\), is unknown for most materials. Here, we demonstrate the feasibility of measuring \(\varepsilon (T)\) using an electrostatic levitation (ESL) technique that allows such measurements to be made on levitated solid and liquid samples in a contamination-free, high-vacuum environment. The \(\varepsilon (T)\) for solid Ni and liquid \(\hbox {Zr}_{60}\hbox {Al}_{10}\hbox {Cu}_{18}\hbox {Ni}_{9}\hbox {Co}_{3}\) from these measurements is consistent with the existing literature data.
Keywords
Emissivity Electrostatic levitation Liquids Glasses SolidsNotes
Acknowledgments
This work was partially supported by NASA under Grants NNX10AU19G and NNX16AB52G. Any opinions, finding, and conclusions or recommendations expressed in this manuscript are those of the author(s) and do not necessarily reflect the views of NASA. We would like to thank C. E. Pueblo for technical help.
References
- 1.G.L. Zuppardo, K.G. Ramanathan, J. Opt. Soc. Am. 61, 1607 (1971)ADSCrossRefGoogle Scholar
- 2.K.G. Ramanathan, S.H. Yen, J. Opt. Soc. Am. 67, 32 (1977)ADSCrossRefGoogle Scholar
- 3.R. Smalley, A.J. Sievers, J. Opt. Soc. Am. 68, 1516 (1978)ADSCrossRefGoogle Scholar
- 4.R. Roger, S.H. Yen, K.G. Ramanathan, J. Opt. Soc. Am. 69, 1384 (1979)ADSCrossRefGoogle Scholar
- 5.G.L. Abbott, in Measurement of Thermal Radiation Properties of Solids, ed. by J. C. Richmond, (NASA SP-31, 1963), p.293Google Scholar
- 6.Y.S. Touloukian, D.P. Dewitt, Thermophysical Properties of Matter, vol. 7 (Plenum Press, New York-Washington, 1970)Google Scholar
- 7.P.-F. Paradis, T. Ishikawa, S. Yoda, Int. J. Thermophys. 24, 239 (2003)CrossRefGoogle Scholar
- 8.S. Krishnan, P.C. Nordine, Phys. Rev. B 47, 11780 (1993)ADSCrossRefGoogle Scholar
- 9.S. Krishnan, C.D. Anderson, P.C. Nordine, Phys. Rev. B 49, 3161 (1994)ADSCrossRefGoogle Scholar
- 10.J.L. McClure, K. Boboridis, A. Cezairliyan, Int. J. Thermophys. 20, 1137 (1999); ibid 20, 1149 (1999)Google Scholar
- 11.H. Watanabe, M. Susa, H. Fukuyama, K. Nagata, Int. J. Thermophys. 24, 473 (2003)Google Scholar
- 12.C. Davisson, J.R. Weeks, J. Opt. Soc. Am. 8, 581 (1924)ADSCrossRefGoogle Scholar
- 13.W.J. Parker, G.C. Abbott, Symposium on Thermal Radiation of Solids, ed. by S. Katzoff, (NASA SP-55), p. 11 (1965)Google Scholar
- 14.A.J. Sievers, J. Opt. Soc. Am. 68, 1505 (1978)ADSCrossRefGoogle Scholar
- 15.
- 16.W.-K. Rhim, M. Collender, M.T. Hyson, W.T. Simms, D.D. Elleman, Rev. Sci. Instrum. 56, 307 (1985)ADSCrossRefGoogle Scholar
- 17.A.K. Gangopadhyay, G.W. Lee, K.F. Kelton, J.R. Rogers, A.I. Goldman, D.S. Robinson, T.J. Rathz, R.W. Hyers, Rev. Sci. Instrum. 76, 073901 (2005)Google Scholar
- 18.N.A. Mauro, K.F. Kelton, Rev. Sci. Instrum. 82, 035114 (2011)Google Scholar
- 19.K.E. Grey, Proc. R. Soc. A 145, 855 (1934)Google Scholar
- 20.R.E. Pawel, E.E. Stansbury, J. Phys. Chem. Sol. 26, 607 (1965)ADSCrossRefGoogle Scholar
- 21.R.K. Wunderlich, H.-J. Fecht, Mater. Trans. 42, 565 (2001)CrossRefGoogle Scholar
- 22.D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht, A.L. Greer, Int. Mat. Rev. 38, 273 (1993)CrossRefGoogle Scholar
- 23.D.P. Verret, K.G. Ramanathan, J. Opt. Soc. Am. 68, 1167 (1978)ADSCrossRefGoogle Scholar
- 24.H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, J. Appl. Phys. 104, 054901 (2008)ADSCrossRefGoogle Scholar
- 25.R.K. Wunderlich, H.-J. Fecht, Mater. Sci. Tech. 16, 402 (2005)ADSGoogle Scholar
- 26.I. Egry, A. Diefenbach, W. Dreier, J. Piller, Int. J. Thermophys. 22, 569 (2001)CrossRefGoogle Scholar
- 27.J.C. Bendert, M.E. Blodgett, A.K. Gangopadhyay, K.F. Kelton, Appl. Phys. Lett. 102, 211913 (2013)ADSCrossRefGoogle Scholar
- 28.X.L. Lin, W.L. Johnson, W.-K. Rhim, JIM. 38, 473 (1997)Google Scholar
- 29.S.X. Cheng, Expt. Therm. Fluid Sci. 2, 165 (1989)CrossRefGoogle Scholar
- 30.N.A. Mauro, A.J. Vogt, K.S. Derendorf, M.L. Johnson, G.E. Rustan, D.G. Quirinale, A. Kreyssig, K.A. Lokshin, J.C. Neuefeind, Xun-Li Wang Ke An, A.I. Goldman, T. Egami, K.F. Kelton, Rev. Sci. Instrum. 87, 013904 (2016)ADSCrossRefGoogle Scholar
- 31.M.E. Blodgett, A.K. Gangopadhyay, K.F. Kelton, Int. J. Thermophys. 36, 701 (2015)ADSCrossRefGoogle Scholar
- 32.A.K. Gangopadhyay, J.C. Bendert, N.A. Mauro, K.F. Kelton, J. Phys.: Condens. Matter 24, 375102 (2012)Google Scholar