Genetic Analysis of Migration Pattern of Female Bonobos (Pan paniscus) Among Three Neighboring Groups

  • Shintaro IshizukaEmail author
  • Kazuya Toda
  • Takeshi Furuichi


Relationships between females of different groups in female philopatric species are typically antagonistic, whereas those in female dispersing species can be more moderate. Such nonantagonistic relationships among females of neighboring groups may allow immigrant females to minimize dispersal costs by migrating into those groups, whereas the frequency of female migration among neighboring groups is little understood in female dispersing species. Bonobos (Pan paniscus) are a species in which females disperse and often show affinitive interactions between groups during intergroup encounters. We examined the frequency of female migration into neighboring groups in bonobos using genetic and demographic data. We studied 27 immigrant female bonobos in three neighboring groups at Wamba, Democratic Republic of the Congo. We estimated the frequency of female migration into neighboring groups using the following formula: the number of females that migrated into any neighboring group/the number of females that migrated into any nonnatal group. We estimated the number of females that migrated into any neighboring group using genetic evidence for female migration among the three groups, and the number of neighboring groups for the three groups. We estimated the number of females that migrated into any nonnatal group using the age of subject females, age of first birth, interbirth intervals, and mortality. The estimated frequency of female migration into any neighboring group was 60% (4.5/7.48). Our results suggest that female bonobos do not disperse far from their natal groups, which may be because they usually transfer between groups during intergroup encounters.


Bonobo Female dispersal Intergroup encounter Migration Neighboring group Pan paniscus 



We thank the Research Centre for Ecology and Forestry and the Ministry of Scientific Research, Democratic Republic of the Congo for permitting our research. We also thank local assistants at Wamba for help in our fieldwork; Dr. C. Hashimoto, Dr. T. Sakamaki, and Dr. N. Tokuyama for efforts to manage our field camp and for helpful comments on our discussion; Dr. Y. Kawamoto, Dr. H. Imai, Dr. G. Hanya, and Ms. K. Takano for help in our genetic analysis; Mr. J. A. Pastrana and Ms. W. Lee for help in our English writing; and Dr. J. M. Setchell, Dr. S. Van Belle, and two referees for their reviewing processes and helpful comments for our manuscript. This study was financially supported by the Japan Society for the Promotion of Science Grant-in-aid for JSPS fellows (17 J09827 to S. Ishizuka; 17 J01336 to K. Toda), Japan Society for the Promotion of Science Grant-in-aid for Scientific Research (17255005, 22255007, 26257408 to T. Furuichi; 19405015, 25304019 to C. Hashimoto; 25257407, 16H02753 to T. Yumoto), the Japan Society for the Promotion of Science Core-to-Core Program (2015-2017 to T. Furuichi), the Japan Ministry of the Environment Global Environment Resarch Fund (D-1007 to T. Furuichi), and the Leading Graduate Program in Primatology and Wildlife Science of Kyoto University.

Author’s Contribution

SI designed this study, collected most of DNA samples for analysis, conducted DNA experiments, analyzed the genetic data, and wrote and revised the manuscript. KT collected a few of the DNA samples. TF supervised SI to design this study. All authors gave final approval for publication


  1. Ban, S. D., Boesch, C., & Janmaat, R. L. (2014). Taї chimpanzees anticipate revisiting high-valued fruit trees from further distances. Animal Cognition, 17, 1353–1364.CrossRefGoogle Scholar
  2. Boesch, C., & Boesch-Achermann, H. (2000). The chimpanzees of the Taï Forest: Behavioural ecology and evolution. Oxford: Oxford University Press.Google Scholar
  3. Boesch, C., Crockford, C., Herbinger, I., Wittig, R., Moebius, Y., & Normand, E. (2008). Intergroup conflicts among chimpanzees in Tai National Park: lethal violence and the female perspective. American Journal of Primatology, 70, 519–532.CrossRefGoogle Scholar
  4. Brown, M., & Crofoot, M. (2013). Social and spatial relations between primate groups. In E. Sterling, E. Bynum, & M. Blair (Eds.), Primate ecology and conservation (pp. 151–176). Oxford: Oxford University Press.CrossRefGoogle Scholar
  5. Cheney, D. L. (1987). Interactions and relationships between groups. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, & T. T. Struhsaker (Eds.), Primate societies (pp. 267–281). Chicago: University of Chicago Press.Google Scholar
  6. Crofoot, M. C., & Wrangham, R. W. (2010). Intergroup aggression in primates and humans: The case for a unified theory. In P. M. Kappeler & J. Silk (Eds.), Mind the gap: Tracing the origins of human universals (pp. 171–195). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  7. Eberle, M., & Kappeler, P. M. (2006). Family insurance: Kin selection and cooperative breeding in a solitary primate (Microcebus murinus). Behavioral Ecology and Sociobiology, 60, 582–588.CrossRefGoogle Scholar
  8. Fünfstück, T., Arandjelovic, M., Morgan, D. B., Sanz, C., Breuer, T., et al. (2014). The genetic population structure of wild western lowland gorillas (Gorilla gorilla gorilla) living in continuous rain forest. American Journal of Primatology, 78, 868–878.CrossRefGoogle Scholar
  9. Furuichi, T. (2011). Female contributions to the peaceful nature of bonobo society. Evolutionary Anthropology, 20, 131–142.CrossRefGoogle Scholar
  10. Furuichi, T., Idani, G., Ihobe, H., & Kuroda, S. (1998). Population dynamics of wild bonobos (Pan paniscus) at Wamba. International Journal of Primatology, 19, 1029–1043.CrossRefGoogle Scholar
  11. Furuichi, T., Idani, G., Ihobe, H., Hashimoto, C., Tashiro, Y., et al. (2012). Long-term studies on wild bonobos at Wamba, Luo Scientific Reserve, D. R. Congo: Towards the understanding of female life history in a male-philopatric species. In P. M. Kappeler & D. P. Watts (Eds.), Long-term field studies of primates (pp. 413–433). Berlin: Springer.CrossRefGoogle Scholar
  12. Goodall, J. (1986). The chimpanzees of Gombe: Patterns of behavior. Cambridge: Harvard University Press.Google Scholar
  13. Guschanski, K., Caillaud, D., Robbins, M. M., & Vigilant, L. (2008). Females shape the genetic structure of a gorilla population. Current Biology, 18, 1809–1814.CrossRefGoogle Scholar
  14. Harris, T. R., & Monfort, S. L. (2003). Behavioral and endocrine dynamics associated with infanticide in a black and white colobus monkey (Colobus guereza). American Journal of Primatology, 61, 135–142.CrossRefGoogle Scholar
  15. Hashimoto, C. (1997). Context and development of sexual behavior of wild bonobos at Wamba, Zaire. International Journal of Primatology, 18, 1–21.CrossRefGoogle Scholar
  16. Hashimoto, C., & Furuichi, T. (2001). Intergroup transfer and inbreeding avoidance in bonobos. Primate Research, 17, 259–269.CrossRefGoogle Scholar
  17. Hashimoto, C., Takenaka, O., & Furuichi, T. (1996). Matrilineal kin relationship and social behavior of wild bonobos (Pan paniscus): sequencing the D-loop region of mitochondrial DNA. Primates, 37, 305–318.CrossRefGoogle Scholar
  18. Hashimoto, C., Tashiro, Y., Hibino, E., Mulavwa, M., Yangozene, K., Furuichi, T., Idani, G.’., & Takenaka, O. (2008). Longitudinal structure of a unit-group of bonobos: Male philopatry and possible fusion of unit-groups. In T. Furuichi & J. Thompson (Eds.), The bonobos: Behavior, ecology, and conservation (pp. 107–119). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  19. Hohmann, G., & Fruth, B. (2002). Dynamics in social organisation of bonobos (Pan paniscus). In C. Boesch, G. Hohmann, & L. F. Marchant (Eds.), Behavioural diversity in chimpanzees and bonobos (pp. 138–150). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  20. Idani, G. (1990). Relations between unit-groups of bonobos at Wamba, Zaire: encounters and temporary fusions. African Study Monographs, 11, 153–186.Google Scholar
  21. Isbell, L. A., & Van Vuren, D. (1996). Differential costs of locational and social dispersal and their consequences for female group-living primates. Behaviour, 133, 1–36.CrossRefGoogle Scholar
  22. Ishizuka, S., Kawamoto, Y., Sakamaki, T., Tokuyama, N., Toda, K., Okamura, H., & Furuichi, T. (2018). Paternity and kin structure among three neighbouring groups in wild bonobos at Wamba. Royal Society Open Science, 5, 171006.CrossRefGoogle Scholar
  23. Janmaat, R. L., & Chancellor, R. L. (2010). Exploring new areas: how important is long-term spatial memory for mangabey (Lophocebus albigena johnstonii) foraging efficiency? International Journal of Primatology, 31, 863–886.CrossRefGoogle Scholar
  24. Kahlenberg, S. M., Thompson, M. E., Muller, M. N., & Wrangham, R. W. (2008). Immigration costs for female chimpanzees and male protection as an immigrant counterstrategy to intrasexual aggression. Animal Behaviour, 76, 1497–1509.CrossRefGoogle Scholar
  25. Kalinowski, S. T., Taper, M. L., & Marshall, T. C. (2007). Revising how the computer program cervus accommodates genotyping error increases success in paternity assignment. Molecular Ecology, 16, 1099–1106.CrossRefGoogle Scholar
  26. Kano, T. (1992). The last ape: Pygmy chimpanzee behavior and ecology. Stanford: Stanford University Press.Google Scholar
  27. Kawamoto, Y., Takemoto, H., Higuchi, S., Sakamaki, T., Hart, J. A., Hart, T. B., Tokuyama, N., Reinartz, G. E., Guislain, P., Dupain, J., Cobden, A. K., Mulavwa, M. N., Yangozene, K., Darroze, S., Devos, C., & Furuichi, T. (2013). Genetic structure of wild bonobo populations: diversity of mitochondrial DNA and geographical distribution. PLoS ONE, 8, e59660.CrossRefGoogle Scholar
  28. Kawata, M. (1990). The effect of kinship on spacing among female red-backed voles, Clethrionomys rufocanus bedfordiae. Oecologia, 72, 115–122.CrossRefGoogle Scholar
  29. Kinnaird, M. F. (1992). Variable resource defense by the Tana River crested mangabey. Behavioral Ecology and Sociobiology, 31, 115–122.CrossRefGoogle Scholar
  30. Kuroda, S. (1989). Developmental retardation and behavioral characteristics of pygmy chimpanzees. In P. G. Heltne & L. A. Marquardt (Eds.), Understanding chimpanzees (pp. 184–193). Cambridge: Harvard University Press.Google Scholar
  31. Langergraber, K. E., Boesch, C., Inoue, E., Inoue-Murayama, M., Mitani, J. C., Nishida, T., Pusey, A., Reynolds, V., Schubert, G., Wrangham, R. W., Wroblewski, E., & Vigilant, L. (2011). Genetic and “cultural” similarity in wild chimpanzees. Proceedings of the Royal Society B: Biological Sciences, 278, 408–416.CrossRefGoogle Scholar
  32. Marshall, T. C., Slate, J., Kruuk, L. E. B., & Pemberton, J. M. (1998). Statistical confidence for likelihood-based paternity inference in natural populations. Molecular Ecology, 7, 639–655.CrossRefGoogle Scholar
  33. Mertl-Millhollen, A. (2006). Scent marking as resource defense by female Lemur catta. American Journal of Primatology, 68, 605–621.CrossRefGoogle Scholar
  34. Mitani, J. C., Watts, D. P., & Amsler, S. J. (2010). Lethal intergroup aggression leads to territorial expansion in wild chimpanzees. Current Biology, 20, R507–R508.CrossRefGoogle Scholar
  35. Monard, A. M., & Duncan, P. (1996). Consequences of natal dispersal in female horses. Animal Behaviour, 52, 565–579.CrossRefGoogle Scholar
  36. Moscovice, L. R., Douglas, P. H., Martinez-Iñigo, L., Surbeck, M., Vigilant, L., & Hohmann, G. (2017). Stable and fluctuating social preferences and implications for cooperation among female bonobos at LuiKotale, Salonga National Park, DRC. American Journal of Physical Anthropology, 163, 158–172.CrossRefGoogle Scholar
  37. Nishida, T., & Kawanaka, K. (1972). Inter-unit-group relationships among wild chimpanzees of the Mahali Mountains. Kyoto University African Studies, 7, 131–169.Google Scholar
  38. Nozawa, K. (1972). Population genetics of Japanese monkeys. I. Estimation of the effective troop size. Primates, 13, 389–393.CrossRefGoogle Scholar
  39. Payne, H. F. P., Lawes, M. J., & Henzi, S. P. (2003). Fatal attack on an adult female Cercopithecus mitis erythrarchus: implications for female dispersal in female-bonded societies. International Journal of Primatology, 24, 1245–1250.CrossRefGoogle Scholar
  40. Printes, R. C., & Strier, K. B. (1999). Behavioral correlates of dispersal in female muriquis (Brachyteles arachnoides). International Journal of Primatology, 20, 941–960.CrossRefGoogle Scholar
  41. Pusey, A. E. (1980). Inbreeding avoidance in chimpanzees. Animal Behaviour, 28, 543–552.CrossRefGoogle Scholar
  42. Robbins, M. M., & Sawyer, S. C. (2007). Intergroup encounters in mountain gorillas of Bwindi impenetrable National Park, Uganda. Behaviour, 144, 1497–1519.CrossRefGoogle Scholar
  43. Sakamaki, T., Behncke, I., Laporte, M., Mulavwa, M., Ryu, H., Takemoto, H., Tokuyama, N., Yamamoto, S., & Furuichi, T. (2015). Intergroup transfer of females and social relationships between immigrants and residents in bonobo (Pan paniscus) societies. In T. Furuichi, J. Yamagiwa, & F. Aureli (Eds.), Dispersing primate females (pp. 127–164). Tokyo: Springer.CrossRefGoogle Scholar
  44. Sakamaki, T., Ryu, H., Toda, K., Tokuyama, N., & Furuichi, T. (2018). Increased frequency of intergroup encounters in wild bonobos (Pan paniscus) around the yearly peak in fruit abundance at Wamba. International Journal of Primatology, 39, 685–704.CrossRefGoogle Scholar
  45. Shields, W. M. (1987). Dispersal in mating systems: Investigating their causal connections. In D. Chepko-Sade & Z. T. Halpin (Eds.), Mammalian dispersal patterns: The effects of social structure on population genetics (pp. 3–24). Chicago: University of Chicago Press.Google Scholar
  46. Sicotte, P. (1993). Inter-group encounters and female transfer in mountain gorillas: influence of group composition on male behavior. American Journal of Primatology, 30, 21–36.CrossRefGoogle Scholar
  47. Støen, O. G., Bellemain, E., Sæbø, S., & Swenson, J. E. (2005). Kin-related spatial structure in brown bears Ursus arctos. Behavioral Ecology and Sociobiology, 59, 191–197.CrossRefGoogle Scholar
  48. Struhsaker, T. T. (2010). The red colobus monkeys. Oxford: Oxford University Press.CrossRefGoogle Scholar
  49. Tokuyama, N., & Furuichi, T. (2016). Do friends help each other? Patterns of female coalition formation in wild bonobos at Wamba. Animal Behaviour, 119, 27–35.CrossRefGoogle Scholar
  50. Townsend, S. W., Slocombe, K. E., & Thompson, M. E. (2007). Infanticide in wild chimpanzees. Current Biology, 17, R355–R356.CrossRefGoogle Scholar
  51. van Noordwijk, M. A., Arora, N., Willems, E. P., Dunkel, L. P., Amda, R. N., Mardianah, N., Ackermann, C., Krützen, M., & van Schaik, C. P. (2012). Female philopatry and its social benefits among Bornean orangutans. Behavioral Ecology and Sociobiology, 66, 823–834.CrossRefGoogle Scholar
  52. Vigilant, L., Pennington, R., Harpending, H., Kocher, T. D., & Wilson, A. C. (1989). Mitochondrial DNA sequences in single hairs from a southern African population. Proceedings of the National Academy of Sciences of the USA, 86, 9350–9354.CrossRefGoogle Scholar
  53. Watts, D. P. (1989). Infanticide in mountain gorillas: New cases and a reconsideration of the evidence. Ethology, 81, 1–18.CrossRefGoogle Scholar
  54. White, O. L., & Densmore, L. D. I. I. I. (1992). Mitochondrial DNA isolation. In A. R. Hoelzel (Ed.), Molecular genetic analysis of populations: A practical approach (pp. 29–55). Oxford: Oxford University Press.Google Scholar
  55. Wilson, M. L., & Wrangham, R. W. (2003). Intergroup relations in chimpanzees. Annual Review of Anthropology, 32, 363–392.CrossRefGoogle Scholar
  56. Wrangham, R. W. (1980). An ecological model of female-bonded primate groups. Behaviour, 75, 262–300.CrossRefGoogle Scholar
  57. Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to systems of mating. Evolution, 19, 395–420.CrossRefGoogle Scholar
  58. Yamagiwa, J. (1983). Diachronic changes in two eastern lowland gorilla groups (Gorilla gorilla graueri) in the mt. Kahuzi region, Zaire. Primates, 24, 174–183.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Primate Research InstituteKyoto UniversityAichiJapan
  2. 2.Japan Society for Promotion of ScienceTokyoJapan

Personalised recommendations