International Journal of Primatology

, Volume 40, Issue 4–5, pp 511–531 | Cite as

Behavior, Diet, and Habitat Use by Blonde Capuchin Monkeys (Sapajus flavius) in a Coastal Area Prone to Flooding: Direct Observations and Camera Trapping

  • Karolina Medeiros
  • Monique Bastos
  • Gareth Jones
  • Bruna BezerraEmail author


Coastal areas prone to flooding are relatively neglected in primate studies. Eight out of 29 known populations of Critically Endangered Sapajus flavius occur in areas very close to, or containing, mangrove and várzea (i.e., tidal forests) forests, suggesting that these habitats are important for the species. We monitored Sapajus flavius in a mosaic of mangrove forest, estuarine várzea forest, and terra firme forest (i.e., nonfloodable forest) in northeastern Brazil. We carried out the study through direct observations of the animals, tracking their signs and baited camera trapping, between January and December 2016. Direct observations and signs provided 292 records of Sapajus flavius: 61% in terra firme, 36% in várzea, and 3% in mangrove. We recorded 26 food items consumed: 17 plants and 9 animals. Camera trapping provided 396 records of the animals: 21% in terra firme, 73% in várzea, and 6% in mangrove. Concurrent visits to more than one camera trap station suggested fission–fusion behavior in Sapajus flavius. We recorded carried infants throughout 2016, suggesting the absence of reproductive seasonality in the species. Adult females carried infants on 68% of occasions, suggesting that they play a key role in infant care. Sapajus flavius was largely diurnal but showed some crepuscular activity. Agonistic behaviors, although rare, were positively related to the quantity of food available in the baited camera trap stations, while play behaviors were negatively related to food availability. Coastal areas prone to flood are used by Sapajus flavius, especially várzea, and thus they should receive wide attention from researchers and protection from the government to avoid local extinctions of Sapajus flavius and other primates inhabiting such areas in Brazil.


Activity pattern Wildlife monitoring Fission–fusion Mangrove Primates Terra firme Várzea 



The present study is in accordance with the Brazilian law under the permit # 25727-1 MMA, ICMBio, and SISBIO to Bruna Bezerra. We are thankful to Tronox Pigmentos do Brasil SA (former Cristal Mineração do Brasil Ltda), Sr. Geraldo Moraes, Sr. Virgílio Pinto, Rodrigo Costa, Severino Ramos, and Cristiano Lira for essential logistical support at the study site. M. Bastos and K. Medeiros were funded by FACEPE (Pernambuco Foundation to Support Science and Technology) scholarships (IBPG-0544-2.05/13, IBPG-0225-2.04/15). We thank Carla Castro, Monica Montenegro, Paulo Carvalho, Antonio Souto, and João Pedro Souza Alves for fruitful discussions over the course of this study. We thank Hevana Lima for the drawings in Fig. 2. This is a new contribution from our blonde capuchin research conservation project funded by Mohamed bin Zayed Species Conservation Fund, Margot Marsh Biodiversity Foundation, Rufford Foundation, FACEPE (APQ-1534-2.04/10, APQ-0143-2.04/14, BFT-01602.04), and CNPq (The Brazilian National Council for Scientific and Technological Development, Universal 445071/2014-1).

Author Contributions

KM and BB conceived and designed the study; KM conducted the fieldwork and analysed all camera trap images; KM and BB performed data analysis. KM, MB, GJ and BB wrote the manuscript.

Supplementary material

10764_2019_103_MOESM1_ESM.docx (1.2 mb)
ESM 1 (DOCX 1187 kb)
10764_2019_103_MOESM2_ESM.mpg (13.9 mb)
ESM 2 (MPG 14268 kb)
10764_2019_103_MOESM3_ESM.mpg (45 mb)
ESM 3 (MPG 46032 kb)
10764_2019_103_MOESM4_ESM.mpg (12.1 mb)
ESM 4 (MPG 12370 kb)
10764_2019_103_MOESM5_ESM.docx (3.2 mb)
ESM 5 (DOCX 3292 kb)
10764_2019_103_MOESM6_ESM.docx (18 kb)
ESM 6 (DOCX 17 kb)


  1. Alfaro, A. C. (2010). Effects of mangrove removal on benthic communities and sediment characteristics at Mangawhai harbour, northern New Zealand. ICES Journal of Marine Science, 67, 1087–1104.Google Scholar
  2. Alongi, D. M. (2002). Present state and future of the world's mangrove forests. Environmental Conservation, 29, 331–349.Google Scholar
  3. Alongi, D. M. (2008). Mangrove forest: Resilience, protection from tsunamis, and responses to global change. Estuarine, Coastal and Shelf Science, 76, 1–13.Google Scholar
  4. Alongi, D. M. (2015). The impact of climate change on mangrove forests. Current Climate Change Reports, 1, 30–39.Google Scholar
  5. Altmann, J. (1974). Observational study of behavior: Sampling methods. Behaviour, 49, 227–267.Google Scholar
  6. Anderson, J., Rowcliffe, J., & Cowlishaw, G. (2007). Does the matrix matter? A forest primate in a complex agricultural landscape. Biological Conservation, 135, 212–222.Google Scholar
  7. Araújo, H., Mariano, E., Toledo, G., Filho, A., & Hernández, M. (2010). Avifauna de floresta de restinga em um complexo de mineração no litoral norte da Paraíba, Brasil. Revista Nordestina de Zoologia, 4, 46–56.Google Scholar
  8. Asensio, N., Korstjens, A., Schaffner, C., & Aureli, F. (2008). Intragroup aggression, fission-fusion dynamics and feeding competition in spider monkeys. Behaviour, 145, 983–1001.Google Scholar
  9. Aureli, F., & Schaffner, C. (2007). Aggression and conflict management at fusion in spider monkeys. Biology Letters, 3, 147–149.PubMedPubMedCentralGoogle Scholar
  10. Aureli, F., Schaffner, C., Boesch, C., Bearder, S., Call, J., et al (2008). Fission-fusion dynamics: New research frameworks. Current Anthropology, 49, 627–654.Google Scholar
  11. Bastos, M., Souto, A., Jones, G., Eason, P., Bione, C., Schiel, N., & Bezerra, B. (2015). Vocal repertoire of wild blonde capuchins (Sapajus flavius) and contextual use of calls. American Journal of Primatology, 77, 605–617.PubMedGoogle Scholar
  12. Bastos, M., Medeiros, K., Jones, G., & Bezerra, B. (2018). Small but wise: Common marmosets (Callithrix jacchus) use acoustic signals as cues to avoid interactions with blonde capuchin monkeys (Sapajus flavius). American Journal of Primatology, 80, e22744–e22710.PubMedGoogle Scholar
  13. Bastos, M., Medeiros, K., Souto, A., Jones, G., & Bezerra, B. (2019). Use of mangrove habitats by Sapajus flavius assessed by vocalisation surveys. In A. Barnett, K. Nowak, & I. Matsuda (Eds.), Primates of flooded habitats (pp. 64–67). Cambridge: Cambridge University Press.Google Scholar
  14. Beltrão-Mendes, R., Cunha, A., & Ferrari, S. (2011). New localities and perspectives on the sympatry between two endangered primates (Callicebus coimbrai and Cebus xanthosternos) in northeastern Brazil. Mammalia, 75, 103–105.Google Scholar
  15. Bernard, H., Matsuda, I., Hanya, G., & Ahmad, A. (2011). Characteristics of night sleeping trees of proboscis monkeys (Nasalis larvatus) in Sabah, Malaysia. International Journal of Primatology, 32, 259–267.Google Scholar
  16. Bessa, J., Sousa, C., & Hockings, K. (2015). Feeding ecology of chimpanzees (Pan troglodytes verus) inhabiting a forest-mangrove-savanna-agricultural matrix at Caiquene-Cadique, Cantanhez National Park, Guinea Bissau. American Journal of Primatology, 77, 651–665.PubMedGoogle Scholar
  17. Bezerra, B. M., Bastos, M., Souto, A., Keasey, M., Eason, P., Schiel, N., & Jones, G. (2014). Camera trap observations of nonhabituated critically endangered wild blonde capuchins, Sapajus flavius (formerly Cebus flavius). International Journal of Primatology, 35, 895–907.Google Scholar
  18. Blake, J., Guerra, J., Mosquera, D., Torres, R., Loiselle, B., & Romo, D. (2010). Use of mineral licks by white-bellied spider monkeys (Ateles belzebuth) and red howler monkeys (Alouatta seniculus) in eastern Ecuador. International Journal of Primatology, 31, 471–483.Google Scholar
  19. Chapman, C. A., & Chapman, L. J. (2000). Determinants of group size in primates: The importance of travel costs. In S. Boinski & P. A. Garber (Eds.), On the move: How and why animals travel in groups (pp. 24–42). Chicago: University of Chicago Press.Google Scholar
  20. Coelho, C. G., Falótico, T., Izar, P., Mannu, M., Resende, B. D., Siqueira, J. O., & Ottoni, E. B. (2015). Social learning strategies for nut-cracking by tufted capuchin monkeys (Sapajus spp.). Animal Cognition, 18, 911–919.PubMedGoogle Scholar
  21. Couzin, I., & Laidre, M. (2009). Fission-fusion populations. Current Biology, 19, R633–R635.PubMedGoogle Scholar
  22. CPB (Centro Nacional de Pesquisa e Conservação de Primatas Brasileiros). (2014). Áreas importantes para a conservação de primatas no Centro de Endemismo Pernambuco. João Pessoa - PB, Brazil: Instituto Chico Mendes de Conservação da Biodiversidade, Ministério do meio ambiente. Accessed 8 Feb 2017.
  23. Cutrim, F. (2013). Padrão comportamental e uso de ferramentas em macacos-prego (Sapajus libidinosus) residentes em manguezal. PhD thesis, Universidade de São Paulo.Google Scholar
  24. Di Bitetti, M. S., & Janson, C. H. (2001). Reproductive socioecology of tufted capuchins (Cebus apella nigritus) in northeastern Argentina. International Journal of Primatology, 22, 127–142.Google Scholar
  25. Dinerstein, E., Olson, D., Graham, D., Webster, A., Primm, S., et al (1995). Conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. Washington: The World Wildlife Fund.Google Scholar
  26. Fernandes, M. (1991). Tool use and predation of oysters (Crassostrea rhizophorae) by the tufted capuchin, Cebus apella apella, in brackish water mangrove swamp. Primates, 32, 529–531.Google Scholar
  27. Fernandes, M., & Aguiar, N. (1993). Evidências sobre a adaptação de primatas neotropicais às áreas de mangue com ênfase no macaco-prego Cebus apella apella. In M. Yamamoto & M. Sousa (Eds.), A primatologia no Brasil IV (pp. 67–80). Natal, RN: Editora Universitária.Google Scholar
  28. Fialho, M., Valença-Montenegro, M., Silva, T., Ferreira, J., & Laroque, P. (2014). Ocorrência de Sapajus flavius e Alouatta belzebul no centro de Endemismo Pernambuco. Neotropical Primates, 21, 214–218.Google Scholar
  29. Field, C., Osborn, J., Hoffman, L., Polsenberg, J., Ackerly, D., et al (1998). Mangrove biodiversity and ecosystem function. Global Ecology and Biogeography Letters, 7, 3–14.Google Scholar
  30. Flesher, K. M. (2015). The distribution, habitat use, and conservation status of three Atlantic Forest monkeys (Sapajus xanthosternos, Callicebus melanochir, Callithrix sp.) in an agroforestry/forest mosaic in southern Bahia, Brazil. International Journal of Primatology, 36, 1172–1197.Google Scholar
  31. Fragaszy, D. M. (2012). Community resources for learning: How capuchin monkeys construct technical traditions. Biological Theory, 6, 231–240.Google Scholar
  32. Fragaszy, D., Visalberghi, E., & Fedigan, L. (2004). The complete capuchin: The biology of the genus Cebus. Cambridge: Cambridge University Press.Google Scholar
  33. Francisco, P., Medeiros, R., Santos, D., & Matos, R. (2015). Classificação climática de Köppen e Thornthwaite para o estado da Paraíba. Revista Brasileira de Geografia Física, 8, 1006–1016.Google Scholar
  34. Freese, C., & Oppenheimer, J. (1981). The capuchin monkeys, genus Cebus. In A. F. Coimbra-Filho & R. A. Mittermeier (Eds.), Ecology and behavior of Neotropical primates (pp. 331–390). Rio de Janeiro: Academia Brasileira de Ciências.Google Scholar
  35. Galat, G., & Galat-Luong, A. (1976). La colonisation de la mangrove par Cercopithecus aethiops sabaeus au Senegal. Extrait de la Terre et la Vie, Revue d’Écologie Appliquée, 30, 3–30.Google Scholar
  36. Gardner, C. (2016). Use of mangroves by lemurs. International Journal of Primatology, 37, 317–332.PubMedPubMedCentralGoogle Scholar
  37. Giri, C., Ochieng, E., Tieszen, L., Zhu, Z., Singh, A., et al (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.Google Scholar
  38. Godoy, M., & Lacerda, L. (2015). Mangroves response to climate change: A review of recent findings on mangrove extension and distribution. Anais da Academia Brasileira de Ciências, 87, 651–667.PubMedGoogle Scholar
  39. Gumert, M. D., & Malaivijitnond, S. (2012). Marine prey processed with stone tools by burmese long-tailed macaques (Macaca fascicularis aurea) in intertidal habitats. American Journal of Physical Anthropology, 149, 447–457.PubMedGoogle Scholar
  40. Hill, A. (2006). Why be diurnal? Or, why not be cathemeral? Folia Primatologica, 77, 72–86.Google Scholar
  41. Holmes, S., Gordon, A., Louis, E., & Johnson, S. (2016). Fission-fusion dynamics in black-and-white ruffed lemurs may facilitate both feeding strategies and communal care of infants in a spatially and temporally variable environment. Behavioral Ecology and Sociobiology, 70, 1949–1960.Google Scholar
  42. Hutchings, P., & Saenger, P. (1987). Ecology of mangroves. Queensland: University of Queensland Press.Google Scholar
  43. ICMBio. (2011). Sumário executivo do Plano de Ação Nacional para a Conservação dos Primatas do Nordeste. João Pessoa – PB, Brazil: Instituto Chico Mendes de Conservação da Biodiversidade, Ministério do Meio Ambiente. Accessed 15 March 2017.
  44. Isbell, L. (1991). Contest and scramble competition: Patterns of female aggression and ranging behavior among primates. Behavioral Ecology, 2, 143–155.Google Scholar
  45. Izar, P., Verderane, M., Peternelli-dos Santos, L., Mendonça-Furtado, O., Presotto, A., et al (2012). Flexible and conservative features of social systems in tufted capuchin monkeys: Comparing the socioecology of Sapajus libidinosus and Sapajus nigritus. American Journal of Primatology, 74, 315–331.PubMedGoogle Scholar
  46. Izawa, K. (1980). Social behavior of the wild black-capped capuchins (Cebus apella). Primates, 21, 443–467.Google Scholar
  47. Jones, T., Glass, L., Gandhi, S., Ravaoarinorotsihoarana, L., Carro, A., et al (2016). Madagascar’s mangroves: Quantifying nation-wide and ecosystem specific dynamics, and detailed contemporary mapping of distinct ecosystems. Remote Sensing, 8, 1–31.Google Scholar
  48. Kappeler, P., & van Schaik, C. (2002). Evolution of primate social systems. International Journal of Primatology, 23, 707–740.Google Scholar
  49. Kathiresan, K., & Rajendran, N. (2005). Coastal mangrove forests mitigated tsunami. Estuarine, Coastal and Shelf Science, 65, 601–606.Google Scholar
  50. Kierulff, M., Santos, G., Canale, G., Guidorizzi, C., & Cassano, C. (2004). The use of camera-traps in a survey of the buff-headed capuchin monkey, Cebus xanthosternos. Neotropical Primates, 12, 56–59.Google Scholar
  51. Koenig, A. (2002). Competition for resources and its behavioral consequences among female primates. International Journal of Primatology, 23, 759–783.Google Scholar
  52. Luecke-Bridgeman, L. (2012). Diet of the black howler monkey (Alouatta pigra) in mangrove and the phytochemistry of mangrove plants. American Journal of Physical Anthropology, 147, 71–104.Google Scholar
  53. Majolo, B., Ventura, R., Koyama, N., Hardie, S., Jones, B., et al (2009). Analysing the effects of group size and food competition on Japanese macaque social relationships. Behaviour, 146, 113–137.Google Scholar
  54. Majumder, J., Lodh, R., & Agarwala, B. K. (2012). Fish feeding adaptation by rhesus macaque Macaca mulatta (Cercopithecidae) in the Sundarban mangrove swamps, India. Journal of Threatened Taxa, 4, 2539–2540.Google Scholar
  55. MapBiomas. (2017). Projeto de mapeamento anual da cobertura e uso do solo no Brasil. Accessed 5 May 2017.
  56. Markham, A. C., Gesquiere, L. R., Alberts, S. C., & Altmann, J. (2015). Optimal group size in a highly social mammal. Proceedings of the National Academy of Sciences of the USA, 112, 14882–14887.PubMedGoogle Scholar
  57. McKinney, T. (2011). The effects of provisioning and crop raiding on the diet and foraging activities of human commensal white faced capuchins (Cebus capucinus). American Journal of Primatology, 73, 439–448.PubMedGoogle Scholar
  58. Meijaard, E., & Nijman, V. (2000). Distribution and conservation of the proboscis monkey (Nasalis larvatus) in Kalimantan, Indonesia. Biological Conservation, 92, 15–24.Google Scholar
  59. Milton, K., & Mittermeier, R. (1977). A brief survey of the primates of Coiba Island, Panama. Primates, 18, 931–936.Google Scholar
  60. Nowak, K. (2008). Frequent water drinking by Zanzibar red colobus (Procolobus kirkii) in a mangrove forest refuge. American Journal of Primatology, 70, 1081–1092.PubMedGoogle Scholar
  61. Nowak, K. (2012). Mangrove and peat swamp forests: Refuge habitats for primates and felids. Folia Primatologica, 83, 361–376.Google Scholar
  62. Nowak, K., & Coles, R. (2019). Worldwide patterns in the ecology of mangrove-living monkeys and apes. In K. Nowak, A. Barnett, & I. Matsuda (Eds.), Primates in flooded habitats: Ecology and conservation (pp. 45–53). Cambridge: Cambridge University Press.Google Scholar
  63. O’Brien, T. G., & Robinson, J. G. (1991). Allomaternal care by female wedge-capped capuchin monkeys: Effects of age, rank and relatedness. Behaviour, 119, 30–50.Google Scholar
  64. Oliveira, M., & Langguth, A. (2006). Rediscovery of Marcgrave’s capuchin monkey and designation of a neotype for Simia flavia Schreber, 1774 (Primates, Cebidae). Boletim do Museu Nacional, 523, 1–16.Google Scholar
  65. Oliveira, M. M., Boubli, J. P., & Kierulff, M. C. (2015). Sapajus flavius. The IUCN red list of threatened species 2015: e.T136253A70612549. Accessed 11 April 2017.
  66. Olson, D., & Dinerstein, E. (2002). The global 200: Priority ecoregions for global conservation. Annals of the Missouri Botanical Garden, 89, 199–224.Google Scholar
  67. Olson, E., Marsh, R., Bovard, B., Randrianarimanana, H., Ravaloharimanitra, M., et al (2012). Arboreal camera trapping for the critically endangered greater bamboo lemur Prolemur simus. Oryx, 46, 593–597.Google Scholar
  68. Perry, S., & Rose, L. (1994). Begging and transfer for coati meat by white-faced capuchin monkeys, Cebus capucinus. Primates, 35, 409–415.Google Scholar
  69. Port-Carvalho, M., Ferrari, S., & Magalhães, C. (2004). Predation of crabs by tufted capuchins (Cebus apella) in eastern Amazonia. Folia Primatologica, 75, 154–156.Google Scholar
  70. Prance, G. T. (1979). Notes on the vegetation of Amazonia III. The terminology of Amazonian forest types subject to inundation. Brittonia, 31, 26–38.Google Scholar
  71. Ribeiro-Júnior, M., Ferrari, S., Lima, J., Silva, C., & Lima, J. (2016). Predation of a squirrel monkey (Saimiri sciureus) by an Amazon tree boa (Corallus hortulanus): Even small boids may be a potential threat to small-bodied platyrrhines. Primates, 57, 317–322.PubMedGoogle Scholar
  72. Robb, C. K. (2014). Assessing the impact of human activities on British Columbia’s estuaries. PLoS One, 9, 1–11.Google Scholar
  73. Robins, P., Skov, M., Lewis, M., Giménez, L., Davies, A., et al (2016). Impact of climate change on UK estuaries: A review of past trends and potential projections. Estuarine, Coastal and Shelf Science, 169, 119–135.Google Scholar
  74. Robinson, J. (1984). Diurnal variation in foraging and diet in the wedge-capped capuchin Cebus olivaceus. Folia Primatologica, 43, 216–228.Google Scholar
  75. Rodrigues, N., & Martinez, R. (2014). Wildlife in our backyard: Interactions between Wied's marmoset Callithrix kuhlii (Primates: Callithrichidae) and residents of Ilhéus, Bahia, Brazil. Wildlife Biology, 20, 91–96.Google Scholar
  76. Rog, A., Clarke, R., & Cook, C. (2016). More than marine: Revealing the critical importance of mangrove ecosystems for terrestrial vertebrates. Biodiversity Review, 23, 221–230.Google Scholar
  77. Santos, R. (2010). Uso de ferramentas por macacos-prego em manguezais. PhD thesis, Universidade Federal do Rio Grande do Norte.Google Scholar
  78. Schaeffer-Novelli, Y., Soriano-Sierra, E., Vale, C., Bernini, E., Rovai, A., et al (2016). Climate changes in mangrove forests and salt marshes. Brazilian Journal of Oceanography, 64, 37–52.Google Scholar
  79. Shapiro, A., Trettin, C., Küchly, H., Alavinapanah, S., & Bandeira, S. (2015). The mangroves of the Zambezi Delta: Increase in extent observed via satellite from 1994 to 2013. Remote Sensing, 7, 16504–16518.Google Scholar
  80. Snaith, T., & Chapman, C. (2007). Primate group size and interpreting socioecological models: Do folivores really play by different rules? Evolutionary Anthropology: Issues, News, and Reviews, 16, 94–106.Google Scholar
  81. Soley, F., Chacón, I., & Soley-Guardia, M. (2017). Extraction of hermit crabs from their shells by white-faced capuchin monkeys (Cebus capucinus). Primates, 58, 25–29.PubMedGoogle Scholar
  82. Son, V. (2003). Diet of Macaca fascicularis in a mangrove forest, Vietnam. Laboratory Primate Newsletter, 42, 1–5.Google Scholar
  83. Son, V. (2004). Time budgets of Macaca fascicularis in a mangrove forest, Vietnam. Laboratory Primate Newsletter, 43, 1–4.Google Scholar
  84. Southwick, C. (1967). An experimental study of intragroup agonistic behavior in rhesus monkeys (Macaca mulatta). Behaviour, 28, 182–209.PubMedGoogle Scholar
  85. Stevenson, P., & Vargas, I. (2008). Sample size and appropriate design of fruit and seed traps in tropical forests. Journal of Tropical Ecology, 24, 95–105.Google Scholar
  86. Symington, M. (1990). Fission-fusion social organization in Ateles and Pan. International Journal of Primatology, 11, 47–61.Google Scholar
  87. Tan, C., Yang, Y., & Niu, K. (2013). Into the night: Camera traps reveal nocturnal activity in a presumptive diurnal primate, Rhinopithecus brelichi. Primates, 54, 1–6.PubMedGoogle Scholar
  88. Vannucci, M. (2001). What is so special about mangroves? Brazilian Journal of Biology, 61, 599–603.Google Scholar
  89. Vogel, E. R., & Janson, C. H. (2011). Quantifying primate food distribution and abundance for socioecological studies: An objective consumer-centered method. International Journal of Primatology, 32, 737–754.Google Scholar
  90. Zhang, K., Liu, H., Li, Y., Xu, H., Shen, J., Rhome, J., & Smith III, T. (2012). The role of mangrove in attenuating storm surges. Estuarine, Coastal and Shelf Science, 102, 11–23.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Programa de Pós-Graduação em Biologia Animal, Centro de Biociências, Departamento de ZoologiaUniversidade Federal de PernambucoPernambucoBrazil
  2. 2.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations