International Journal of Primatology

, Volume 39, Issue 6, pp 1022–1038 | Cite as

Phenotypic, Genetic, and Cytogenetic Evidence of Hybridization Between Species of Trans-Andean Tamarins (Genus Saguinus)

  • Iván Darío Soto-CalderónEmail author
  • Yuliet Andrea Acevedo-Garcés
  • Tatiana Restrepo-Agudelo
  • Julio César Llinás-Guerrero
  • Yúdrum Rivillas-Puello
  • Juan Bautista López


Incomplete reproductive isolation and hybridization is relatively frequent in primates. However, no cases of hybridization between formally recognized species have been reported in tamarins (genus Saguinus), a highly specious group of Neotropical primates. Here, we provide evidence from different sources to demonstrate three cases of hybridization in captivity between species of Saguinus distributed west of the Andes (trans-Andean). To do this, we described fur color patterns, genotyped 12 microsatellite loci, sequenced the mitochondrial hypervariable region I, and generated chromosomal R bands for the three formally recognized species and the new hybrids of trans-Andean tamarins. We identified one case of interbreeding between the white-footed tamarin (Saguinus leucopus) and the cotton-top tamarin (S. œdipus) and two independent reciprocal crosses of S. leucopus and the Geoffroy’s tamarin (S. geoffroyi). All these hybrids exhibit intermediate phenotypes between parental species, and genetic data are consistent with first-generation hybridization. Cytogenetic data suggest that the S. leucopus × S. œdipus hybrid is sterile, as it is a female with XY karyotype apparently affected by a condition known as gonadal dysgenesis. Trans-Andean tamarin species occur in northwest Colombia with parapatric distributions bounded by major rivers. Potential contact zones, either natural or anthropogenic, might facilitate hybridization in the wild, but this scenario remains to be assessed. Our findings warrant future studies focused on the evolutionary mechanisms of reproductive isolation in tamarins. Given the risk of hybridization, caution should be taken in management and conservation of tamarins.


Chimerism Microsatellite Mitochondrial DNA Gonadal dysgenesis Hybrid Neotropical primate 



We thank Liliana Cortés-Ortiz, Lauriane Cacheux, Joanna Setchell, and three anonymous reviewers for their helpful comments in an early draft of this article. We also thank Marcela Ramírez-Monroy and Jóhnatan Álvarez-Cardona for their valuable assistance with the clinical assessment of tamarin specimens. We are very grateful to Parque Zoológico Santa Fe and the animal shelter of Área Metropolitana del Valle de Aburrá for granting access to their records, facilities, and specimens. Finally, we acknowledge the Biology Institute of the University of Antioquia for hiring of the scientific illustrator. This research was funded by the University of Antioquia through a CODI grant (CPT-1227) and a Sustainability grant (2016-ES84160119).

Supplementary material

10764_2018_44_MOESM1_ESM.docx (782 kb)
ESM 1 (DOCX 781 kb)


  1. Agostini, I., Holzmann, I., & Di Bitetti, M. S. (2008). Infant hybrids in a newly formed mixed-species group of howler monkeys (Alouatta guariba clamitans and Alouatta caraya) in northeastern Argentina. Primates, 49, 304–307.CrossRefGoogle Scholar
  2. Aguiar, L. M., Pie, M. R., & Passos, F. C. (2008). Wild mixed groups of howler species (Alouatta caraya and Alouatta clamitans) and new evidence for their hybridization. Primates, 49, 149–152.CrossRefGoogle Scholar
  3. Amos, W., Hoffman, J. I., Frodsham, A., Zhang, L., Best, S., & Hill, A. V. S. (2007). Automated binning of microsatellite alleles: Problems and solutions. Molecular Ecology Notes, 7, 10–14.CrossRefGoogle Scholar
  4. Anderson, E. C., & Thompson, E. A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 160, 1217–1229.PubMedPubMedCentralGoogle Scholar
  5. Arnold, M. L., & Meyer, A. (2006). Natural hybridization in primates: One evolutionary mechanism. Zoology, 109, 261–276.CrossRefGoogle Scholar
  6. Banes, G. L., Galdikas, B. M., & Vigilant, L. (2016). Reintroduction of confiscated and displaced mammals risks outbreeding and introgression in natural populations, as evidenced by orang-utans of divergent subspecies. Scientific Reports, 6, 22026.CrossRefGoogle Scholar
  7. Benirschke, K., & Brownhill, L. E. (1962). Further observations on marrow chimerism in marmosets. Cytogenetic and Genome Research, 1, 245–257.CrossRefGoogle Scholar
  8. Bensasson, D., Feldman, M. W., & Petrov, D. A. (2003). Rates of DNA duplication and mitochondrial DNA insertion in the human genome. Journal of Molecular Evolution, 57, 343–354.CrossRefGoogle Scholar
  9. Böhle, U. R., & Zischler, H. (2002). Polymorphic microsatellite loci for the mustached tamarin (Saguinus mystax) and their cross-species amplification in other New World monkeys. Molecular Ecology Notes, 2, 1–3.Google Scholar
  10. Buckner, J. C., Lynch Alfaro, J. W., Rylands, A. B., & Alfaro, M. E. (2015). Biogeography of the marmosets and tamarins (Callitrichidae). Molecular Phylogenetics and Evolution, 82, 413–425.CrossRefGoogle Scholar
  11. Camargo, M., & Cervenka, J. (1982). Patterns of DNA replication of human chromosomes II. Replication map and replication model. American Journal of Human Genetics, 34, 757–780.PubMedPubMedCentralGoogle Scholar
  12. Cheverud, J. M., Jacobs, S. C., & Moore, A. J. (1993). Genetic differences among subspecies of the saddle-back tamarin (Saguinus fuscicollis): Evidence from hybrids. American Journal of Primatology, 31, 23–39.CrossRefGoogle Scholar
  13. CITES (Convention on International Trade in Endangered Species of Wild Fauna and Flora). (2017).
  14. Cortés-Ortiz, L., Duda, T. F., Canales-Espinosa, D., García-Orduña, F., Rodríguez-Luna, E., & Bermingham, E. (2007). Hybridization in large-bodied New World primates. Genetics, 176, 2421–2425.CrossRefGoogle Scholar
  15. Cortés-Ortiz, L., Agostini, I., Aguiar, L. M., Kelaita, M., Silva, F. E., & Bicca-Marques, J. C. (2015). Hybridization in howler monkeys: Current understanding and future directions. In M. M. Kowalewski et al. (Eds.), Howler monkeys (pp. 107–131). Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media.Google Scholar
  16. Crispo, E., Moore, J. S., Lee-Yaw, J. A., Gray, S. M., & Haller, B. C. (2011). Broken barriers: Human-induced changes to gene flow and introgression in animals. BioEssays, 33, 508–518.CrossRefGoogle Scholar
  17. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: More models, new heuristics and parallel computing. Nature Methods, 9, 772–772.CrossRefGoogle Scholar
  18. Defler, T. D. (2010). Historia Natural de los Primates Colombianos (2nd ed.). Bogotá, Colombia: Universidad Nacional de Colombia.Google Scholar
  19. Detwiler, K. M., Burrell, A. S., & Jolly, C. J. (2005). Conservation implications of hybridization in African cercopithecine monkeys. International Journal of Primatology, 26, 661–684.CrossRefGoogle Scholar
  20. Dias, P. A. D., Alvarado-Serrano, D., Rangel-Negrín, A., Canales-Espinosa, D., & Cortés-Ortiz, L. (2013). Landscape attributes affecting the natural hybridization of Mexican howler monkeys. In L. K. Marsh & C. A. Chapman (Eds.), Primates in fragments: Complexity and resilience (pp. 423–435). Developments in Primatology: Progress and Prospects. New York: Springer Science+Business Media.Google Scholar
  21. Díaz-Muñoz, S. L. (2012). Role of recent and old riverine barriers in fine-scale population genetic structure of Geoffroy’s tamarin (Saguinus geoffroyi) in the Panama Canal watershed. Ecology and Evolution, 2, 298–309.CrossRefGoogle Scholar
  22. Drummond, A. J., & Rambaut, A. (2007). Beast: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.CrossRefGoogle Scholar
  23. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.CrossRefGoogle Scholar
  24. Finstermeier, K., Zinner, D., Brameier, M., Meyer, M., Kreuz, E., et al (2013). A mitogenomic phylogeny of living primates. PLoS One, 8(7), e69504.CrossRefGoogle Scholar
  25. Frankham, R., Ballou, J. D., Dudash, M. R., Eldridge, M. D., Fenster, C. B., et al (2012). Implications of different species concepts for conserving biodiversity. Biological Conservation, 153, 25–31.CrossRefGoogle Scholar
  26. Gengozian, N., Batson, J. S., & Eide, P. (1964). Hematologic and cytogenetic evidence for hematopoietic chimerism in the marmoset, Tamarinus nigricollis. Cytogenetic and Genome Research, 3(6), 384–393.CrossRefGoogle Scholar
  27. Gligor, M., Ganzhorn, J. U., Rakotondravony, D., Ramilijaona, O. R., Razafimahatratra, E., et al (2009). Hybridization between mouse lemurs in an ecological transition zone in southern Madagascar. Molecular Ecology, 18, 520–533.CrossRefGoogle Scholar
  28. Green, K. M. (1976). The nonhuman primate trade in Colombia. In R. W. J. Thorington & P. G. Heltne (Eds.), Neotropical primates: Field studies and conservation (pp. 85–98). Washington, DC: National Academy of Sciences.Google Scholar
  29. Groves, C. P. (2001). Primate taxonomy. Washington, DC: Smithsonian Institution Press.Google Scholar
  30. Groves, C. (2004). The what, why and how of primate taxonomy. International Journal of Primatology, 25, 1105–1126.CrossRefGoogle Scholar
  31. Groves, C. (2012). Species concept in primates. American Journal of Primatology, 74, 687–691.CrossRefGoogle Scholar
  32. Ha, M., Pang, M., Agarwal, V., & Chen, Z. J. (2008). Interspecies regulation of microRNAs and their targets. Biochimica et Biophysica Acta (BBA), 1779, 735–742.Google Scholar
  33. Hanihara, T., & Natori, M. (1987). Preliminary analysis of numerical taxonomy of the genus Saguinus based on dental measurements. Primates, 28, 517–523.CrossRefGoogle Scholar
  34. Hershkovitz, P. (1977). Living New World monkeys (Platyrrhini) (Vol. 1). Chicago: University of Chicago Press.Google Scholar
  35. Hirai, H., Hirai, Y., Domae, H., & Kirihara, Y. (2007). A most distant intergeneric hybrid offspring (Larcon) of lesser apes, Nomascus leucogenys and Hylobates lar. Human Genetics, 122, 477–483.CrossRefGoogle Scholar
  36. Iliopoulos, D., Volakakis, N., Tsiga, A., Rousso, I., & Voyiatzis, N. (2004). Description and molecular analysis of SRY and AR genes in a patient with 46, XY pure gonadal dysgenesis (Swyer syndrome). Annales de Génétique, 47, 185–190.CrossRefGoogle Scholar
  37. Kappeler, P. M., & van Schaik, C. P. (2002). Evolution of primate social systems. International Journal of Primatology, 23, 707–740.CrossRefGoogle Scholar
  38. Kidwell, M. G., & Novy, J. B. (1979). Hybrid dysgenesis in Drosophila melanogaster: Sterility resulting from gonadal dysgenesis in the PM system. Genetics, 92, 1127–1140.PubMedPubMedCentralGoogle Scholar
  39. López, J. B., & Márquez, M. E. (2002). Modelo experimental para el estudio cromosómico en las células de mamíferos. Medellín, Colombia: Universidad Nacional de Colombia.Google Scholar
  40. MADS (Ministerio de Ambiente y Desarrollo Sostenible) (2012). Estrategia nacional para la prevención y control al tráfico ilegal de especies silvestres: Diagnóstico y plan de acción ajustado. Bogotá, Colombia: Ministerio de Ambiente y Desarrollo Sostenible.Google Scholar
  41. Malukiewicz, J., Boere, V., Fuzessy, L. F., Grativol, A. D., E Silva, I. D. O., et al (2015). Natural and anthropogenic hybridization in two species of eastern Brazilian marmosets (Callithrix jacchus and C. penicillata). PLoS One, e0127268, 10.Google Scholar
  42. Mayr, E. (1942). Systematics and the origin of species. In New York: Columbia University Press.Google Scholar
  43. McCann-Crosby, B., Mansouri, R., Dietrich, J. E., McCullough, L. B., Sutton, V. R., et al (2014). State of the art review in gonadal dysgenesis: Challenges in diagnosis and management. International Journal of Pediatric Endocrinology, 2014(1), 4.CrossRefGoogle Scholar
  44. Mendes, S. L. (1997). Hybridization in free-ranging Callithrix flaviceps and the taxonomy of the Atlantic forest marmosets. Neotropical Primates, 5, 6–8.Google Scholar
  45. Mendes, S. L., Vielliard, J. M. E., De Marco, P., & Jr. (2009). The vocal identity of the Callithrix species (Primates, Callitrichidae). In S. M. Ford, L. M. Porter, & L. C. Davis (Eds.), The smallest anthropoids: The marmoset/callimico radiation (pp. 63–84). New York: Springer Science+Business Media.CrossRefGoogle Scholar
  46. Michalak, P. (2009). Epigenetic, transposon and small RNA determinants of hybrid dysfunctions. Heredity, 102, 45–50.CrossRefGoogle Scholar
  47. Moorhead, P. S., Nowell, P. C., Mellman, W. J., Battips, D. M., & Hungerford, D. A. (1960). Chromosome preparations of leukocytes cultured from human peripheral blood. Experimental Cell Research, 20, 135–136.CrossRefGoogle Scholar
  48. Mundy, N. I., Pissinatti, A., & Woodruff, D. S. (2000). Multiple nuclear insertions of mitochondrial cytochrome b sequences in callitrichine primates. Molecular Biology and Evolution, 17, 1075–1080.CrossRefGoogle Scholar
  49. Myers, R. H., & Shafer, D. A. (1979). Hybrid ape offspring of a mating of gibbon and siamang. Science, 205, 308–310.CrossRefGoogle Scholar
  50. Neusser, M., Münch, M., Anzenberger, G., & Müller, S. (2004). Investigation of marmoset hybrids (Cebuella pygmaea × Callithrix jacchus) and related Callitrichinae (Platyrrhini) by cross-species chromosome painting and comparative genomic hybridization. Cytogenetic and Genome Research, 108, 191–196.CrossRefGoogle Scholar
  51. Nievergelt, C. M., Mundy, N. I., & Woodruff, D. S. (1998). Microsatellite primers for genotyping common marmosets (Callithrix jacchus) and other callitrichids. Molecular Ecology, 7, 1432–1434.PubMedGoogle Scholar
  52. Nievergelt, C. M., Digby, L. J., Ramakrishnan, U., & Woodruff, D. S. (2000). Genetic analysis of group composition and breeding system in a wild common marmoset (Callithrix jacchus) population. International Journal of Primatology, 21, 1–20.CrossRefGoogle Scholar
  53. Nieves, M., Mendez, G., Ortiz, A., Mühlmann, M., & Mudry, M. D. (2008). Karyological diagnosis of Cebus (Primates, Platyrrhini) in captivity: Detection of hybrids and management program applications. Animal Reproduction Science, 108, 66–78.CrossRefGoogle Scholar
  54. O’neill, R. J. W., O’neill, M. J., & Graves, J. A. M. (1998). Undermethylation associated with retroelement activation and chromosome remodelling in an interspecific mammalian hybrid. Nature, 393, 68–72.Google Scholar
  55. Olsson, I. A. S., & Westlund, K. (2007). More than numbers matter: The effect of social factors on behaviour and welfare of laboratory rodents and non-human primates. Applied Animal Behaviour Science, 103, 229–254.CrossRefGoogle Scholar
  56. Peres, C. A., Patton, J. L., & da Silva, N. F. (1996). Riverine barriers and gene flow in Amazonian saddle-back tamarins. Folia Primatologica, 67, 113–124.CrossRefGoogle Scholar
  57. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.PubMedPubMedCentralGoogle Scholar
  58. Roos, C., Zinner, D., Kubatko, L. S., Schwarz, C., Yang, M., et al (2011). Nuclear versus mitochondrial DNA: Evidence for hybridization in colobine monkeys. BMC Evolutionary Biology, 11, 77.CrossRefGoogle Scholar
  59. Rosenblum, L. L., Supriatna, J., Hasan, M. N., & Melnick, D. J. (1997). High mitochondrial DNA diversity with little structure within and among leaf monkey populations (Trachypithecus auratus and Trachypithecus cristatus). International Journal of Primatology, 18, 1005–1028.CrossRefGoogle Scholar
  60. Ross, C. N., French, J. A., & Ortí, G. (2007). Germ-line chimerism and paternal care in marmosets (Callithrix kuhlii). Proceedings of the National Academy of Sciences of the USA, 104, 6278–6282.CrossRefGoogle Scholar
  61. Ruiz-Miranda, C. R., Gomes Affonso, A., de Morais, M. M., Verona, C. E., Martins, A., & Beck, B. (2006). Behavioral and ecological interactions between reintroduced golden lion tamarins (Leontopithecus rosalia Linnaeus, 1766) and introduced marmosets (Callithrix spp, Linnaeus, 1758) in Brazil’s Atlantic Coast forest fragments. Brazilian Archives of Biology and Technology, 49, 99–109.CrossRefGoogle Scholar
  62. Rylands, A. B., & Mittermeier, R. A. (2013). Family Callitrichidae (marmosets and tamarins). In R. A. Mittermeier, A. B. Rylands, & D. E. Wilson (Eds.), Handbook of the mammals of the world: Primates (Vol. 3, pp. 262–346). Barcelona: Lynx Edicions.Google Scholar
  63. Rylands, A. B., Heymann, E. W., Lynch Alfaro, J., Buckner, J. C., Roos, C., et al (2016). Taxonomic review of the New World tamarins (Primates: Callitrichidae). Zoological Journal of the Linnean Society, 177, 1003–1028.CrossRefGoogle Scholar
  64. Sambrook, J., Fritsch, E. F., & Maniatis, T. (1989). Molecular cloning: A laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press.Google Scholar
  65. Sankararaman, S., Patterson, N., Li, H., Pääbo, S., & Reich, D. (2012). The date of interbreeding between Neandertals and modern humans. PLoS Genetics, 8, e1002947.Google Scholar
  66. Santana, S. E., Lynch Alfaro, J., & Alfaro, M. E. (2012). Adaptive evolution of facial colour patterns in Neotropical primates. Proceedings of the Royal Society of London B: Biological Sciences, 279, 2204–2211.CrossRefGoogle Scholar
  67. Satkoski Trask, J. A., Garnica, W. T., Smith, D. G., Houghton, P., Lerche, N., & Kanthaswamy, S. (2013). Single-nucleotide polymorphisms reveal patterns of allele sharing across the species boundary between Rhesus (Macaca mulatta) and Cynomolgus (M. fascicularis) Macaques. American Journal of Primatology, 75, 135–144.CrossRefGoogle Scholar
  68. Silva, B. T., Sampaio, M. I., Schneider, H., Schneider, M. P., Montoya, E., et al (1992). Natural hybridization between Saimiri taxa in the Peruvian Amazonia. Primates, 33, 107–113.CrossRefGoogle Scholar
  69. Soto-Calderón, I. D., Lee, E. J., Jensen-Seaman, M. I., & Anthony, N. M. (2012). Factors affecting the relative abundance of nuclear copies of mitochondrial DNA (numts) in hominoids. Journal of Molecular Evolution, 75, 102–111.CrossRefGoogle Scholar
  70. Soto-Calderón, I. D., Acevedo-Garcés, Y. A., Álvarez-Cardona, J., Hernández-Castro, C., & García-Montoya, G. M. (2016). Physiological and parasitological implications of living in a city: The case of the white-footed tamarin (Saguinus leucopus). American Journal of Primatology, 78, 1272–1281.CrossRefGoogle Scholar
  71. Spowart, G. (1994). Mitotic metaphase chromosome preparation from peripheral blood for high resolution. In J. R. Gosden (Ed.), Chromosome analysis protocols (pp. 1–10). Totowa, NJ: Humana Press.Google Scholar
  72. Sweeney, C. G., Curran, E., Westmoreland, S. V., Mansfield, K. G., & Vallender, E. J. (2012). Quantitative molecular assessment of chimerism across tissues in marmosets and tamarins. BMC Genomics, 13, 98.CrossRefGoogle Scholar
  73. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  74. Tosi, A. J., Morales, J. C., & Melnick, D. J. (2000). Comparison of Y chromosome and mtDNA phylogenies leads to unique inferences of macaque evolutionary history. Molecular Phylogenetics and Evolution, 17, 133–144.CrossRefGoogle Scholar
  75. Xu, X., & Arnason, U. J. (1996). The mitochondrial DNA molecule of Sumatran orangutan and a molecular proposal for two (Bornean and Sumatran) species of orangutan. Journal of Molecular Evolution, 43, 431.CrossRefGoogle Scholar
  76. Zechner, U., Shi, W., Hemberger, M., Himmelbauer, H., Otto, S., Orth, A., et al. (2004). Divergent genetic and epigenetic post-zygotic isolation mechanisms in Mus and Peromyscus. Journal of Evolutionary Biology, 17(2), 453–460.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Iván Darío Soto-Calderón
    • 1
    Email author
  • Yuliet Andrea Acevedo-Garcés
    • 1
  • Tatiana Restrepo-Agudelo
    • 2
    • 3
  • Julio César Llinás-Guerrero
    • 4
  • Yúdrum Rivillas-Puello
    • 5
  • Juan Bautista López
    • 5
  1. 1.Genética, Mejoramiento y Modelación AnimalUniversidad de AntioquiaMedellínColombia
  2. 2.Corporación Autónoma Regional del Valle del CaucaCaliColombia
  3. 3.Área Metropolitana del Valle de AburráMedellínColombia
  4. 4.Corporación Autónoma Regional de la Frontera NororientalCúcutaColombia
  5. 5.Universidad Nacional de Colombia – Sede Medellín, Facultad de CienciasMedellínColombia

Personalised recommendations