Learning Science Through Enacted Astronomy

  • E. RollindeEmail author


The Human Orrery is a representation of the Solar System at a human scale, on which positions of planets over time are symbolized by different discs. Learners can then walk along the orbits of the planets with the right pace. This pedagogical tool uses the principles of enacted cognition to promote a better understanding of the scientific laws of dynamics. Enaction assumes that cognition is based on action. Applied to pedagogy, it implies that learning of concepts must be based on gestures and perceptions first. I applied during 2 years an enacted pedagogical sequence using our Human Orrery to different populations of learners. The main purpose was the understanding of velocity and inertia by KS4 classes (14–16 years old). Interviews and closed questions reveal a qualitative enhancement of the motivation and well-being of the learners during the enacted sequence. To evaluate further the impact of the enacted sequence, I formulated 2 open questions. The first one concerns the relation between distance, duration, and velocity through the period of planets. The second one focuses on inertia and gravity through the comparison of the free fall of an apple on Earth and the orbit of the Moon around Earth. The questions were asked to KS4 pupils after the enacted sequence (experimental classes) and to KS4, undergraduate and pre-teachers after a classical lecture on dynamics (demonstration classes). Quantitative analysis of the answers reveals specific cognitive insight, especially for students reasoning about velocity and trajectories. The general purpose of this paper is thus to illustrate the use of the Human Orrery in the context of science education in the classroom and to make a first, preliminary demonstration of its efficiency.


Enaction Human Orrery Science education Solar system Velocity 



Part of this project was supported through the IDEX “Apprentissage en mouvement” of the ComUE Sorbonne Universités, in particular the funding of the Human Orrery. Emmanuel Rollinde is a member of the French project F-HOU, within the European network EU-HOU ( I thank particularly Mme Richard (Lycée Condorcet, Paris) who has given me the opportunity to organize sequences with her students regularly. I thank her students, and all teachers and students who have worked with me on the Human Orrery or answered the questionnaire as “demonstration class”. I thank deeply Pr Glenberg and Johnson-Glenberg for fruitful discussions and their contribution to my understanding of enaction, through discussion and reading of their papers.

Supplementary material

10763_2017_9865_MOESM1_ESM.docx (501 kb)
ESM 1 (DOCX 500 kb)


  1. Abrahamson, D., Shayan, S., Bakker, A., & van der Schaaf, M. F. (2016). Eye-tracking Piaget, capturing the emergence of attentional anchors in the coordination of proportional motor action. Human Development, 58(4–5), 218–244.Google Scholar
  2. Albert, D., Kirchmeier-Rust, M., & Matsuda, F. (2008). A formal framework for modeling the development course of competence and performance in the distance, speed and time domain. Development Review, 28, 401–420.CrossRefGoogle Scholar
  3. Asher, D. J., Bailey, M. E., Christou, A. A., & Popescu, M. D. (2007). The human Orrery: A new educational tool for astronomy. The Astronomy Education Review, 5(2), 159–176.CrossRefGoogle Scholar
  4. Bailey, M. E. (2006). The Armagh Observatory Human Orrery. The Observatory, 126, 236–241.Google Scholar
  5. Bailey, J. M., & Slater, T. F. (2005). Resource letter AER-1: Astronomy education research. American Journal of Physics, 73(8), 677–683.CrossRefGoogle Scholar
  6. Balta, N., & Eryýlmaz, A. (2017). Counterintuitive dynamics test. International Journal of Science and Mathematics Education, 15(3), 411-431.
  7. Beare, R. (2007). Investigation into the potential of investigative projects involving powerful robotic telescopes to inspire interest in science. International Journal of Science Education, 29(3), 279–306.CrossRefGoogle Scholar
  8. Besançon, M., Fenouillet, F., & Shankland, R. (2015). Influence of school environment on adolescents’ creative potential, motivation and well-being. Learning and Individual Differences, 43, 178–184.CrossRefGoogle Scholar
  9. Boër, M., Thiébaut, C., Pack, H., Pennypaker, C., Isaac, M., Melchior, A.L., … Ebisuzaki, T. (2001). Hands-On universe: A global program for education and public outreach in astronomy. In ASP Conf. (Ed.), Proceedings of ADASS X conference (pp. 1-4). Boston, MA. Retrieved from
  10. Closset, J.L. (1983). Le raisonnement linéaire en électrocinétique [Linear reasoning in electrocinetics] (Doctoral dissertation). Retrieved from Thèse en Ligne. Université Denis Diderot Paris VII, Paris, France.Google Scholar
  11. Coomans, M. K. D. & Timmermans, H. J. P. (1997). Towards a taxonomy of virtual reality user interfaces. In Information Vizualization IEEE (Ed.), Proceedings of 1997 I.E. Conference (pp. 279–284). Washington, DC: IEEE. Retrieved from
  12. Coquidé, M., & Morge, L. (2011). Espace et temps dans l'enseignement des sciences et des technologies [Space and time in science and technology teaching]. Recherches en didactique des sciences et des technologies, 4, 9–26.Google Scholar
  13. Crépault, J. (1989). Temps et raisonnement : Développement cognitif de l'enfant à l'adulte [Time and reasoning: Cognitive development from child to adult]. Lille, France: Presses universitaires de Lille.Google Scholar
  14. Doran, R., Melchior, A.L., Boudier, T., Delva, P., Ferlet, R., de Almeida, M.L.T., … Roberts, S. (2012). Astrophysics datamining in the classroom: Exploring real data with new software tools and robotic telescopes. Retrieved from:
  15. Ebersbach, M., Van Dooren, W., & Verschaffel, L. (2011). Investigating children’s and adolescents’ understanding of constant and accelerated notions. International Journal of Science and Mathematics Education, 9(1), 25-46.
  16. Fenouillet, F., Heutte, H., Martin-Krumm, C., & Boniwell, I. (2015). Validation française de l’échelle multidimensionnelle de satisfaction de vie chez l'élève [Validation of the Multidimensional Students’ Life Satisfaction Scale—MSLSS, in France]. Canadian Journal of Behavioural Science / Revue canadienne des sciences du comportement, 47(1), 83–90.CrossRefGoogle Scholar
  17. Francis, P. (2005). Using role-playing games to teach astronomy: An evaluation. Astronomy Education Review, 4(2), 1–9.CrossRefGoogle Scholar
  18. Frappart, S., Raijmakers, M., & Frède, V. (2014). What do children know and understand about universal gravitation? Structural and developmental aspects. Journal of Experimental Child Psychology, 120, 17–38.CrossRefGoogle Scholar
  19. Glenberg, A. M. (2015). Few believe the world is flat: How embodiment is changing the scientific understanding of cognition. Canadian Journal of Experimental Psychology, 69(2), 165–171.CrossRefGoogle Scholar
  20. Glenberg, A. M., Witt, J. K., & Metcalfe, J. (2013). From the revolution to embodiment: 25 years of cognitive psychology. Perspective on Psychological Science, 8, 573–585.CrossRefGoogle Scholar
  21. Goldin-Meadow, S., Nusbaum, H., Kelly, S. D., & Wagner, S. (2001). Explaining math: Gesturing lightens the load. Psychological Science, 12, 516–522.CrossRefGoogle Scholar
  22. Halloun, I. A., & Hestenes, D. (1985). The initial knowledge state of college physics students. American Journal of Physics, 53(11), 1043–1055.CrossRefGoogle Scholar
  23. Hestenes, D., Wells, M., & Swackhamer, G. (1992). Force concept inventory. Physics Teacher, 30, 141–158.CrossRefGoogle Scholar
  24. Johnson-Glenberg, M. C., Megowan-Romanowicz, C., Birchfield, D. A., & Savio-Ramos, C. (2016). Effects of embodied learning and digital platform on the retention of physics content: Centripetal force. Frontiers in Psychology, 7, 1819.CrossRefGoogle Scholar
  25. Kim, M., Roth, W. M., & Thom, J. (2011). Children’s gestures and the embodied knowledge of geometry. International Journal of Science and Mathematics Education, 9(1), 207-238.Google Scholar
  26. Lakoff, G., & Johnson, M. (1999). Philosophy in the flesh: The embodied mind and its challenge to western thought. New York, NY: Basic Books.Google Scholar
  27. Lee, H. S., & Park, J. (2013). Deductive reasoning to teach Newton’s law of motion. International Journal of Science and Mathematics Education, 11(6), 1391-1414.Google Scholar
  28. Lee, G., & Yi, J. (2013). Where cognitive conflict arises from?: The structure of creating cognitive conflict. International Journal of Science and Mathematics Education, 11(3), 601-623.Google Scholar
  29. Planinic, M., Milin-Sipus, Z., Katic, H., Susac, A., & Ivanjek, L. (2012). Comparison of student understanding of line graph slope in physics and mathematics. International Journal of Science and Mathematics Education, 10(6), 1393-1414.Google Scholar
  30. Plummer, J. D., Wasko, K., & Slagle, C. (2011). Children learning to explain daily celestian motions: Understanding astronomy across moving frames of reference: Exploring the role of classroom and planetarium-based instructional contexts. International Journal of Science Education, 33(14), 1963–1992.CrossRefGoogle Scholar
  31. Plummer, J. D., Kocareli, A., & Slagle, C. (2014). Learning to explain astronomy across moving frames of reference: Exploring the role of classroom and planetarium-based instructional contexts. International Journal of Science Education, 36(7), 1083–1106.CrossRefGoogle Scholar
  32. Rollinde, E., Montersino, I., Brunet, P., Kamech, N., Loakes-Gouju, F., Cossara, S., & Le Lan, B. (2015). Un apprentissage en mouvement [Learning by moving]. In Proceedings of 2015 QPES Conference (pp. 730–746). Brest, France: QPES. Retrieved from
  33. Rollinde, E., Chagnon, G., Delva, P., Ferlet, R., Melchior, A.-L., Rambaux, N., & Salomé, P. (2016). Enseigner la physique et les mathématiques autrement [Teaching physics and mathematics in another way]. Bulletin de l’Union de Physiciens, 110, 469–496.Google Scholar
  34. Roorda, G., Vos, P., & Goedhart, M. J. (2015). An actor-oriented transfer perspective on high school students’ development of the use of procedures to solve problems on rate of change. International Journal of Science and Mathematics Education, 13(4), 863-889.Google Scholar
  35. Rozier, S. (1988). Le raisonnement linéaire causal en thermodynamique classique élémentaire [Linear causal reasoning in classical thermodynamics] (Doctoral dissertation). Retrieved from Université Denis Diderot Paris VII, Paris, France. (Accession No.: tel-01275811, version 1).
  36. Segal, M. (2011). Do Gestural Interfaces Promote Thinking? Embodied Interaction: Congruent Gestures and Direct-Touch Promote Performance in Math (Doctoral dissertation). Retrieved from Graduate School of Arts and Sciences, Columbia University.
  37. Siegler, R. (2006). Microgenetic analyses of learning. In D. Khun & R. Siegler (Eds.), Handbook of child psychology: Vol. 2: Cognition, perception and language (6th ed., pp. 464–510). Hoboken, NJ: Wiley.Google Scholar
  38. Slater, S. J., Morrow, C. A. & Slater, T. F. (2008). The impact of a kinesthetic astronomy curriculum on the content knowledge of at-risk students. Paper presented at the meeting of the National Association for Research in Science Teaching, Baltimore.Google Scholar
  39. Sutopo, & Waldrip, B. (2014). Impact of a representational approach on students’ reasoning and conceptual understanding in learning mechanics. International Journal of Science and Mathematics Education, 12(4), 741-765.
  40. Thompson, P. (1994). The development of the concept of speed and its relationship to concepts of rate. In G. Harel & J. Confrey (Eds.), The development of multiplicative reasoning in the learning of mathematics (pp. 181–234). Albany, NY: State University of New York Press.Google Scholar
  41. Treagust, D. F., & Duit, R. (2008). Conceptual change: A discussion of theoretical, methodological and practical challenges of science education. Cultural Studies of Science Education, 3(2), 297–328.CrossRefGoogle Scholar
  42. Trudel, L., & Métioui, A. (2011). Favoriser la compréhension des concepts du mouvement rectiligne à vitesse constante à l'aide d'une investigation scientifique assistée par ordinateur [To favor the understanding of rectilinear motion with a computer assisted science investigation]. Recherches en didactique des sciences et des technologies, 4, 83–108.Google Scholar
  43. Varela, F., Thompson, E. & Rosch, E. (1991). The embodied mind: Cognitive science and human experience. Cambridge, MA: MIT Press.Google Scholar
  44. Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625–636.CrossRefGoogle Scholar

Copyright information

© Ministry of Science and Technology, Taiwan 2017

Authors and Affiliations

  1. 1.Institut d’Astrophysique de Paris, UMR 7095 Sorbonne UniversitésUniversité Pierre et Marie Curie – CNRSParisFrance

Personalised recommendations