Scattering of Terahertz Waves by Snow

  • Yasith Amarasinghe
  • Wei Zhang
  • Rui Zhang
  • Daniel M. Mittleman
  • Jianjun MaEmail author


The applications of terahertz (THz) wireless communication require studies on link performance in all kinds of atmospheric conditions, including rain, fog, cloud, haze, and snow. Here, we present theoretical investigations on THz wave propagation in falling snow and through snow layers. Mie scattering theory is employed to fit the measured data. Good agreement confirms the applicability of Mie theory to dry and wet snow when gaseous attenuation and scintillation loss are considered. We investigate the scattering mechanism in a snow layer under different temperatures and water content. We find the THz wave suffers higher signal loss in snow than in rain under identical fall rate.


Terahertz Snow Scattering Absorption Scintillation 


Funding Information

We appreciate the support by the Beijing Institute of Technology Research Fund Program for Young Scholars. DMM also acknowledges partial support from the US National Science Foundation and from the Air Force Research Laboratory.


  1. 1.
    Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Understanding THz Pulse Propagation in the Atmosphere,” IEEE Transactions on Terahertz Science and Technology, vol. 2, pp. 406-415, 2012.CrossRefGoogle Scholar
  2. 2.
    J. Ma, L. Moeller, and J. F. Federici, “Experimental Comparison of Terahertz and Infrared Signaling in Controlled Atmospheric Turbulence,” Journal of Infrared Millimeter and Terahertz Waves, vol. 36, pp. 130-143, Feb 2015.CrossRefGoogle Scholar
  3. 3.
    J. Ma, R. Shrestha, L. Moeller, and D. M. Mittleman, “Invited Article: Channel performance for indoor and outdoor terahertz wireless links,” APL Photonics, vol. 3, p. 12, 2018.CrossRefGoogle Scholar
  4. 4.
    Y. Yang, M. Mandehgar, and D. R. Grischkowsky, “Broadband THz Signals Propagate Through Dense Fog,” IEEE Photonics Technology Letters, vol. 27, pp. 383-386, 2015.CrossRefGoogle Scholar
  5. 5.
    J. Ma, F. Vorrius, L. Lamb, L. Moeller, and J. F. Federici, “Experimental Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled Rain,” Journal of Infrared Millimeter and Terahertz Waves, vol. 36, pp. 856-865, Sep 2015.CrossRefGoogle Scholar
  6. 6.
    K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 29, pp. 2360-2366, Nov 2012.CrossRefGoogle Scholar
  7. 7.
    K. Su, L. Moeller, R. B. Barat, and J. F. Federici, “Experimental comparison of performance degradation from terahertz and infrared wireless links in fog,” Journal of the Optical Society of America a-Optics Image Science and Vision, vol. 29, pp. 179-184, Feb 2012.CrossRefGoogle Scholar
  8. 8.
    Q. Jing, D. Liu, and J. Tong, “Study on the Scattering Effect of Terahertz Waves in Near-Surface Atmosphere,” IEEE Access, vol. 6, pp. 49007-49018, 2018.CrossRefGoogle Scholar
  9. 9.
    G. A. Siles, J. M. Riera, and P. Garcia-del-Pino, “Atmospheric Attenuation in Wireless Communication Systems at Millimeter and THz Frequencies,” IEEE Antennas and Propagation Magazine, vol. 57, pp. 48-61, 2015.CrossRefGoogle Scholar
  10. 10.
    E.-B. Moon, T.-I. Jeon, and D. R. Grischkowsky, “Long-Path THz-TDS Atmospheric Measurements Between Buildings,” IEEE Transactions on Terahertz Science and Technology, vol. 5, pp. 742-750, 2015.CrossRefGoogle Scholar
  11. 11.
    J. Ma, J. Adelberg, R. Shrestha, L. Moeller, and D. M. Mittleman, “The Effect of Snow on a Terahertz Wireless Data Link,” Journal of Infrared Millimeter and Terahertz Waves, vol. 39, pp. 505-508, 2018.CrossRefGoogle Scholar
  12. 12.
    T. Harimaya, H. Kodama, and K. Muramoto, “Regional differences in snowflake size distributions,” Journal of the Meteorological Society of Japan, vol. 82, pp. 895-903, 2004.CrossRefGoogle Scholar
  13. 13.
    C. P. Woods, M. T. Stoelinga, and J. D. Locatelli, “ Size Spectra of Snow Particles Measured in Wintertime Precipitation in the Pacific Northwest,” Journal of the Atmospheric Sciences,, vol. 65, pp. 189-205, 2008.CrossRefGoogle Scholar
  14. 14.
    D. Atlas, Advances in Geophysics: New York: Elsevier, 1964.Google Scholar
  15. 15.
    C. Magono and T. Nakamura, “Aerodynamic Studies of Falling Snowflakes,” Journal of the Meteorological Society of Japan, vol. 43, pp. 139-147, 1965.CrossRefGoogle Scholar
  16. 16.
    C. Matzler, Thermal Microwave Radiation: Aplications for Remote Sensing. Stevenage, UK: Institution of Engineering and Technology, 2006.CrossRefGoogle Scholar
  17. 17.
    D. Polder and J. H. van Santeen, “The effective permeability of mixtures of solids,” Physica, vol. 12, pp. 257-271, 1946.CrossRefGoogle Scholar
  18. 18.
    M. Hallikainen, F. Ulaby, and M. Abdelrazik, “Dielectric properties of snow in the 3 to 37 GHz range,” IEEE Transactions on Antennas and Propagation, vol. 34, pp. 1329-1340, 1986.CrossRefGoogle Scholar
  19. 19.
    J. Barthel, K. Bachhuber, R. Buchner, and H. Hetzenauer, “Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols,” Chemical Physics Letters, vol. 167, pp. 62-66, 1990.CrossRefGoogle Scholar
  20. 20.
    J. T. Kindt and C. A. Schmuttenmaer, “Far-Infrared Dielectric Properties of Polar Liquids Probed by Femtosecond Terahertz Pulse Spectroscopy,” The Journal of Physical Chemistry, vol. 100, pp. 10373-10379, 1996.CrossRefGoogle Scholar
  21. 21.
    A. P. Stogryn, H. T. Bull, K. Rubayi, and S. Iravanchy, “The microwave permittivity of sea and freshwater,” Sacramento, CA 1996.Google Scholar
  22. 22.
    C. Ronne, L. Thrane, P. O. Astrand, A. Wallqvist, K. V. Mikkelsen, and S. R. Keiding, “Investigation of the temprerature dependence of dielectric relaxation in liquid water by THz reflection spectroscopy and molecular dynamics simulation,” Journal of Chemical Physics, vol. 107, pp. 5319-5331, 1997.CrossRefGoogle Scholar
  23. 23.
    C. Mätzler, Thermal Microwave Radiation: Applications for Remote Sensing. UK: Institution of Engineering & Technology, 2007.Google Scholar
  24. 24.
    F. T. Ulaby, R. K. Moore, and A. K. Fung., Microwave Remote Sensing: Actice and Passive. Vol. 2, Radar remote sensing and surface scattering and emission theory: Reading, MA: Addison-Wesley, 1982.Google Scholar
  25. 25.
    C. Matzler and U. Wegmuller, “Dielectric properties of freshwater ice at microwave frequencies,” Journal of Physics D: Applied Physics, vol. 20, pp. 1623-1630, 1987.CrossRefGoogle Scholar
  26. 26.
    G. Hufford, “A model for the complex permittivity of ice at frequencies below 1 THz,” International Journal of Infrared and Millimeter Waves, vol. 12, pp. 677-682, 1991.CrossRefGoogle Scholar
  27. 27.
    O. Mishima, D. D. Klug, and E. Whalley, “The far-infrared spectrum of ice Ih in the range 8–25 cm − 1. Sound waves and difference bands, with application to Saturn’s rings.,” Journal of Chemical Physics, vol. 78, pp. 6399-6404, 1983.CrossRefGoogle Scholar
  28. 28.
    J. H. Jiang and D. L. Wu, “Ice and water permittivities for millimeter and sub-millimeter remote sensing applications,” Atmospheric Science Letters, vol. 5, pp. 146-151, 2004.CrossRefGoogle Scholar
  29. 29.
    J. S. Marshall and W. M. Palmer, “The distribution of raindrops with size,” Journal of Meteorology, vol. 5, pp. 165-166, 1948.CrossRefGoogle Scholar
  30. 30.
    G. Zhang, M. Xue, Q. Cao, and D. Dawson, “Diagnosing the Intercept Parameter for Exponential Raindrop Size Distribution Based on Video Disdrometer Observations: Model Development,” Journal of Applied Meteorology and Climatology, vol. 47, pp. 2983-2992, 2008.CrossRefGoogle Scholar
  31. 31.
    D. A. de Wolf, “On the Laws-Parsons distribution of raindrop sizes,” Radio Science, vol. 36, pp. 639-642, 2001.CrossRefGoogle Scholar
  32. 32.
    C. Cerro and B. Codina, “Modeling raindrop size distribution and Z(R) relations in the Western Mediterranean Area,” Journal of Applied Meteorology, vol. 36, pp. 1470-1479, 1997.CrossRefGoogle Scholar
  33. 33.
    R. M. Rasmussena, J. Vivekanandana, J. Colea, B. Myersb, and C. Mastersc, “The Estimation of Snowfall Rate Using Visibility,” Journal of Applied Meteorology, vol. 38, pp. 1542-1563, 1998.CrossRefGoogle Scholar
  34. 34.
    K. L. S. Gunn and J. S. Marshall, “The Distribution with Size of Aggregate Snowflakes,” Journal of the Atmospheric Sciences,, vol. 15, pp. 452-461, 1958.Google Scholar
  35. 35.
    R. S. Sekhon and R. C. Srivastava, “Snow Size Spectra and Radar Reflectivity,” Journal of the Atmospheric Sciences,, vol. 27, pp. 299-307, 1970.CrossRefGoogle Scholar
  36. 36.
    H. R. Pruppacher and J. D. Klett, Microphysics of clouds and precipitation. Dordrecht: Kluwer Academic Publishers, 1997.Google Scholar
  37. 37.
    D. Deirmendjian, Electromagnetic scattering on spherical polydispersions. New York: American Elsevier Publishing, 1969.Google Scholar
  38. 38.
    F. Norouzian, E. Marchetti, E. Hoare, M. Gashinova, C. Constantinou, P. Gardner, et al., “Low-THz Wave Snow Attenuation,” presented at the International Conference on Radar (RADAR), 2018.Google Scholar
  39. 39.
    Recommendation ITU-R P.676-11: Attenuation by Atmospheric Gases. Available:!!PDF-E.pdf
  40. 40.
    H. Liebe, G. Hufford, and M. Cotton, “Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz,” presented at the Proceedings of AGARD, 52nd Specialists Meeting of the Electromagnetic Wave Propagation Panel, 1993.Google Scholar
  41. 41.
    J. F. Ohara and D. R. Grischkowsky, “Comment on the Veracity of the ITU-R Recommendation for Atmospheric Attenuation at Terahertz Frequencies,” IEEE Transactions on Terahertz Science and Technology, vol. 8, pp. 372-375, 2018.CrossRefGoogle Scholar
  42. 42.
    J. Ma, F. Vorrius, L. Lamb, L. Moeller, and J. F. Federici, “Comparison of Experimental and Theoretical Determined Terahertz Attenuation in Controlled Rain,” Journal of Infrared Millimeter and Terahertz Waves, vol. 36, pp. 1195-1202, Dec 2015.CrossRefGoogle Scholar
  43. 43.
    S. S. Muhammad, P. Köhldorfer, and E. Leitgeb, “Channel Modeling for Terrestrial Free Space Optical Links,” 2005.Google Scholar
  44. 44.
    S. A. Zabidi, W. A. Khateeb, M. R. Islam, and A. W. Naji, “The Effect of Weather on Free Space Optics Communication (FSO) Under Tropical Weather Conditions and a Proposed Setup for Measurement,” 2012.Google Scholar
  45. 45.
    B. E. A. Saleh and M. C. Teich, Fundamentals of photonics. New York: John Wiley & Sons, 1991.CrossRefGoogle Scholar
  46. 46.
    O. Bouchet, Wireless Optical Telecommunications: John Wiley & Sons, 2012.Google Scholar
  47. 47.
    Y. S. Babkin, I. A. Iskhakov, A. V. Sokolov, L. I. Stroganov, and Y. V. Sukhonin, “Attenuation of radiation at a wavelength of 0.96 mm in snow,” Radio Engineering and Electronic Physics, vol. 15, pp. 2171-2174, 1970.Google Scholar
  48. 48.
    T. Oomori and S. Aoyagi, “A presumptive formula for snowfall attenuation of radio waves,” Trans. Inst. Electron. Commun. Eng. Japan, vol. 54-B, pp. 451-458, 1971.Google Scholar
  49. 49.
    V. W. Richard, J. E. Kammerer, and R. G. Reitz, “140-GHz Attenuation and Optical Visibility Measurements of Fog, Rain and Snow (No. ARBRL-MR-2800),” 1977.Google Scholar
  50. 50.
    D. L. Renaud and J. F. Federici, “Terahertz Attenuation in Snow and Sleet,” Journal of Infrared, Millimeter, and Terahertz Waves, vol. 40, pp. 868-877, 2019.CrossRefGoogle Scholar
  51. 51.
    Y. Kuga, F. T. Ulaby, T. F. Haddock, and R. D. DeRoo, “Millimeter-wave radar scattering from snow 1. Radiative transfer model,” Radio Science, vol. 26, pp. 329-341, 1991.CrossRefGoogle Scholar
  52. 52.
    F. T. Ulaby, T. F. Haddock, R. T. Austin, and Y. Kuga, “Millimeter-wave radar scattering from snow: 2. Comparison of theory with experimental observations,” Radio Science, vol. 26, pp. 343-351, 1991.CrossRefGoogle Scholar
  53. 53.
    J. M. Baker, J. B. Mead, and R. E. McIntosh, “Forward scatter polarimetric measurements of terrain at 35 and 225 GHz,” presented at the IGARSS ’98. Sensing and Managing the Environment. 1998 IEEE International Geoscience and Remote Sensing. Symposium Proceedings. (Cat. No.98CH36174), Seattle, WA, USA, 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of EngineeringBrown UniversityProvidenceUSA
  2. 2.School of Information and ElectronicsBeijing Institute of TechnologyBeijingChina

Personalised recommendations