Characteristics of Coplanar Waveguide of Small Cross Section on BCB with Coplanar Ground to Conductor-Backed Plane Interconnection

  • Anne-Sophie Grimault-Jacquin
  • Nicolas ZerounianEmail author
  • Iméne Kaid Omar
  • Paul Crozat
  • Farah Amar
  • Cédric Villebasse
  • David Bouville
  • Frédéric Hamouda
  • Frédéric Aniel


Conductor-backed coplanar waveguide on 30-μm-thick BCB polymer is fabricated. In order to eliminate unwanted propagation modes for these lines designed for frequencies up to 1 THz, electroplated vias interconnect each coplanar ground to the backed conductor. Transmission line properties are extracted here up to 67 GHz, showing a characteristic impedance of about 50 Ω, but with high conduction losses for this frequency range due to the thin metal layer used. Thru-reflect-line correction and a de-embedding with electrical circuit of accesses are applied to extract line properties. The comparison with a coplanar waveguide model leads to a relative permittivity of 2.676 for the BCB in this low-frequency range.


Transmission lines THz coplanar waveguides Submillimeter wave waveguides Polymer dielectric 



The sample preparation is performed in the Technology Facility of the Center for Nanoscience and Nanotechnology in the French Renatech network.

Funding information

This work was supported by the ANR TERAPACIPODE project, grant ANR-16-CE24-0031-01 of the French Agence Nationale de la Recherche.


  1. 1.
    W. Heinrich, F. Schnieder, T. Tischler Dispersion and radiation characteristics of conductor backed CPW with finite ground width, in IEEE MTT-S Int. Microwave Symp. Digest, p. 1663 (2000)Google Scholar
  2. 2.
    W.-T. Lo, C.-K. C. Tzuang, S.-T. Peng, C.-C. Tien, C.-C. Chang, J.-W. Huang Resonant phenomena in conductor-Baked Coplanar waveguides (CPCPW’s), IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 12, p. 2581 (1993)Google Scholar
  3. 3.
    M. Yu, R. Vahldieck and J. Huang, Comparing coax launcher and wafer probe excitation for 10mil conductor backed CPW with via holes and airbridges, in IEEE MTT-S Int. Microwave Symp. Digest, p. 705 (1993)Google Scholar
  4. 4.
    E. Perret, N. Zerounian, S. David, F. Aniel, Complex permittivity characterization of benzocyclobutene for terahertz applications, Microelectronic Engineering, vol. 85, no. 11, pp. 2276–2281 (2008)CrossRefGoogle Scholar
  5. 5.
    L. Cao, A.-S. Grimault-Jacquin, F. Aniel Comparison and Optimization of dispersion and losses of planar waveguides on benzocyclobutene (BCB) at THz frequencies: Coplanar waveguide (CPW), microstrip, stripline and slotline, PIERS B, vol. 52, p. 161 (2013)CrossRefGoogle Scholar
  6. 6.
    L. Cao, A.-S. Grimault-Jacquin, N. Zerounian, F. Aniel, Design and VNA-measurement of coplanar waveguide (CPW) on benzocyclobutene (BCB) at THz frequencies, Infrared Physics and Technology, vol. 63, pp. 157–164 (2014)CrossRefGoogle Scholar
  7. 7.
    J. Fitzpatrick, Error Models for Systems Measurement, Microwave Journal, pp. 63–66, (1978)Google Scholar
  8. 8.
    G. F. Engen and C. A. Hoer, Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer, IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 12, pp. 987–993 (1979)CrossRefGoogle Scholar
  9. 9.
    R. B. Marks, A multiline method of network analyzer calibration, IEEE Transactions on Microwave Theory and Techniques, vol. 39, no. 7, pp. 1205–1215 (1991).CrossRefGoogle Scholar
  10. 10.
    D. C. DeGroot, J. A. Jargon, and R. B. Marks, Multiline TRL revealed, in ARFTG Microwave Measurement Conference, pp. 131–155 (2002)Google Scholar
  11. 11.
    Keysight Advanced Design System (ADS),
  12. 12.
    B. Bianco, M. Parodi, S. Ridella, and F. Selvaggi, Launcher and microstrip characterization, IEEE Transactions on Instrumentation and Measurement, vol. IM–25, no. 4, pp. 320–323 (1976)CrossRefGoogle Scholar
  13. 13.
    J. P. Mondal and T.-H. Chen, Propagation constant determination in microwave fixture de-embedding procedure, IEEE Transactions on Microwave Theory and Techniques, vol. 36, no. 4, pp. 706–714 (1988)CrossRefGoogle Scholar
  14. 14.
    J. A. Reynoso-Hernández, C. F. Estrada-Maldonado, T. Parra, K. Grenier, and J. Graffeuil, An improved method for the wave propagation constant γ estimation in broadband uniform millimeter-wave transmission line, Microwave and Optical Technology Letters, vol. 22, no. 4, pp. 268–271 (1999)CrossRefGoogle Scholar
  15. 15.
    W. R. Eisendtadt and Y. Eo, S-Parameter-Based IC Interconnect Transmission Line Characterization, IEEE Transactions on Components, Packaging and Manufacturing Technology, pp. 483–490 (1992)Google Scholar
  16. 16.
    ANSYS High Frequency Structure Simulator (HFSS),
  17. 17.
    R. Garg, I. J. Bahl, and M. Bozzi, Microstrip lines and slotlines, 3rd edition, Boston, Artech House (2013)Google Scholar
  18. 18.
    H.-M. Heiliger, M. Nagel, H. G. Roskos, H. Kurz, F. Schnieder, and W. Heinrich, Thin-film microstrip lines for MM and sub-MM/wave on-chip interconnects, in IEEE MTT-S Int. Microwave Symp. Digest, vol. 2, pp. 421–424 (1997)Google Scholar
  19. 19.
    G. E. Ponchak and A. N. Downey, Characterization of Thin Film Microstrip Lines on Polyimide, IEEE Transactions on Components, Packaging and Manufacturing Technology - Part B, vol. 21, no. 2, pp. 171–176 (1998)CrossRefGoogle Scholar
  20. 20.
    E. Peytavit, C. Donche, S. Lepilliet, G. Ducournau, and J.-F. Lampin, Thin-film transmission lines using cyclic olefin copolymer for millimetre-wave and terahertz integrated circuits, Electronics Letters, vol. 47, no. 7, p. 453 (2011)CrossRefGoogle Scholar
  21. 21.
    J. Judek, A.P. Gertych, M. Swiniarski, M. Zdrojek, J. Krupka, J. K. Piotrowski, Characterization of Finite-Width Ground Coplanar Waveguides on High Resistivity Silicon with Ultralow Metallization Thickness, IEEE Transactions on Microwave Theory and Techniques, vol. 65, no. 12, pp. 4836–4842 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anne-Sophie Grimault-Jacquin
    • 1
  • Nicolas Zerounian
    • 1
    Email author
  • Iméne Kaid Omar
    • 1
  • Paul Crozat
    • 1
  • Farah Amar
    • 1
  • Cédric Villebasse
    • 1
  • David Bouville
    • 1
  • Frédéric Hamouda
    • 1
  • Frédéric Aniel
    • 1
  1. 1.Center for Nanoscience and Nanotechnology, CNRS UMR 9001Univ. Paris-Sud, Univ. Paris-SaclayPalaiseauFrance

Personalised recommendations