Advertisement

Selectivity Properties of Cylindrical Waveguides with Longitudinal Wall Corrugations for Second-Harmonic Gyrotrons

  • Tetiana I. Tkachova
  • Vitalii I. ShcherbininEmail author
  • Viktor I. Tkachenko
Article
  • 17 Downloads

Abstract

Spatial harmonic method is applied to investigate selectivity properties of longitudinally corrugated waveguides for potential application in second-harmonic gyrotrons. The effect of corrugations on frequencies, ohmic losses, and mode conversion of guiding TE modes is studied in details. Numerical results are presented for operating second-harmonic and competing first-harmonic modes of a 0.4-THz gyrotron with corrugated RF structure. It is shown that longitudinal wall corrugations of proper dimensions can ensure increase in ohmic losses and decrease in beam-wave coupling strength for the first-harmonic modes, while their effect on the operating mode is only slight. This demonstrates improved selectivity properties of corrugated waveguides for second-harmonic gyrotrons.

Keywords

Gyrotron Cyclotron harmonic Corrugated waveguide Eigenvalue Ohmic losses Mode conversion 

Notes

References

  1. 1.
    G.S. Nusinovich, M.K.A. Thumm, M.I. Petelin, J Infrared Milli Terahz Waves (2014)  https://doi.org/10.1007/s10762-014-0050-7
  2. 2.
    E.A. Nanni, A.B. Barnes, R.G. Griffin, R.J. Temkin, IEEE Trans. THz Sci. Tech. (2011)  https://doi.org/10.1109/TTHZ.2011.2159546
  3. 3.
    T. Idehara, S.P. Sabchevski, J Infrared Milli Terahz Waves (2017)  https://doi.org/10.1007/s10762-016-0314-5
  4. 4.
    V.I. Shcherbinin, V.I. Tkachenko, J Infrared Milli Terahz Waves (2017)  https://doi.org/10.1007/s10762-017-0386-x
  5. 5.
    C.T. Iatrou, S. Kern, A.B. Pavelyev, IEEE Trans. Microw. Theory Techn. (1996)  https://doi.org/10.1109/22.481385
  6. 6.
    J.J Barroso, R.A. Correa, P. Jose de Castro, IEEE Trans. Microw. Theory Techn. (1998)  https://doi.org/10.1109/22.709460
  7. 7.
    O. Dumbrajs, G.S. Nusinovich, IEEE Trans. Plasma Sci. (2004)  https://doi.org/10.1109/TPS.2004.829976
  8. 8.
    T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, in Proc. 17th MMET (2018), pp.238–241  https://doi.org/10.1109/MMET.2018.8460433
  9. 9.
    T.I. Tkachova, V.I. Shcherbinin, V.I. Tkachenko, Problems of Atomic Science and Technology, 6(118), 67 (2018)Google Scholar
  10. 10.
    Z.C. Ioannidis, K.A. Avramidis, G.P. Latsas, I.G. Tigelis, IEEE Trans. Plasma Sci. (2011)  https://doi.org/10.1109/TPS.2011.2118766
  11. 11.
    K.R. Chu, D. Dialetis, Int J Infrared Milli Waves (1984)  https://doi.org/10.1007/BF01014033
  12. 12.
    Z.C. Ioannidis, O. Dumbrajs, I.G. Tigelis, IEEE Trans. Plasma Sci. (2006)  https://doi.org/10.1109/TPS.2006.876518
  13. 13.
    V.A. Flyagin, V.I. Khizhnyak, V.N. Manuilov, M.A. Moiseev, A.B. Pavelyev, V.E. Zapevalov, N.A. Zavolsky, J Infrared Milli Terahz Waves (2003)  https://doi.org/10.1023/A:1021667030616
  14. 14.
    Z.C. Ioannidis, K.A. Avramidis, I.G. Tigelis, IEEE Trans. Electron Devices (2016)  https://doi.org/10.1109/TED.2016.2518217
  15. 15.
    G.I. Zaginaylov, V.I. Shcherbinin, K. Schuenemann, M.Yu. Glyavin, in Proc. 8th MSMW (2013), pp.523–525  https://doi.org/10.1109/MSMW.2013.6622127
  16. 16.
    A.V. Maksimenko, G.I. Zaginaylov, V.I. Shcherbinin, Phys. Part. Nuclei Lett. (2015)  https://doi.org/10.1134/S1547477115020168
  17. 17.
    A.V. Maksimenko, V.I. Shcherbinin, A.V. Hlushchenko, V.I. Tkachenko, K.A. Avramidis, J. Jelonnek, IEEE Trans. Electron Devices (2019)  https://doi.org/10.1109/TED.2019.2893888
  18. 18.
    A.V. Maksimenko, V.I. Shcherbinin, V.I. Tkachenko, J Infrared Milli Terahz Waves (2019)  https://doi.org/10.1007/s10762-019-00589-x
  19. 19.
    V.I. Shcherbinin, G.I. Zaginaylov, V.I. Tkachenko, Problems of Atomic Science and Technology, 4(98), 89 (2015)Google Scholar
  20. 20.
    B.Z. Katsenelenbaum, High-frequency electrodynamics (Wiley-VCH, Weinheim, 2006), pp. 87–91.Google Scholar
  21. 21.
    K.R. Chu, A.T. Lin, IEEE Trans. Plasma Sci. (1988)  https://doi.org/10.1109/27.3798
  22. 22.
    S.N. Vlasov, L.I. Zagryadskaya, M.I. Petelin, Radiophys Quantum Electron (1973)  https://doi.org/10.1007/BF01080919
  23. 23.
    L. Agusu, T. Idehara, H. Mori, T. Saito, I. Ogawa, S. Mitsudo, J Infrared Milli Terahz Waves (2007)  https://doi.org/10.1007/s10762-007-9215-y
  24. 24.
    A.C. Torrezan, Seong-Tae Han, I. Mastovsky, M.A. Shapiro, J.R. Sirigiri, R.J. Temkin,A.B. Barnes, R.G. Griffin, IEEE Trans. Plasma Sci. (2010)  https://doi.org/10.1109/TPS.2010.2046617
  25. 25.
    O. Dumbrajs, T. Idehara, S. Sabchevski, J Infrared Milli Terahz Waves (2010)  https://doi.org/10.1007/s10762-010-9700-6
  26. 26.
    V.I. Shcherbinin, T.I. Tkachova, V.I. Tkachenko, IEEE Trans. Electron Devices (2017)  https://doi.org/10.1109/TED.2017.2769219
  27. 27.
    V.I. Shcherbinin, A.V. Hlushchenko, A.V. Maksimenko, V.I. Tkachenko, IEEE Trans. Electron Devices (2017)  https://doi.org/10.1109/TED.2017.2730252
  28. 28.
    V.I. Shcherbinin, B.A. Kochetov, A.V. Hlushchenko, V.I. Tkachenko, IEEE Trans. Microw. Theory Techn. (2019)  https://doi.org/10.1109/TMTT.2018.2882493
  29. 29.
    S.H. Kao, C.C. Chiu, K.R. Chu, Physics of Plasmas (2012)  https://doi.org/10.1063/1.3684663
  30. 30.
    K.A. Avramidis, G. Aiello, S. Alberti et al., Nuclear Fusion (2019)  https://doi.org/10.1088/1741-4326/ab12f9

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Science Center “Kharkiv Institute of Physics and Technology” of National Academy of Science of UkraineKharkivUkraine
  2. 2.V.N. Karazin Kharkiv National UniversityKharkivUkraine

Personalised recommendations