Terahertz Spectrum Analyzer Based on Fourier Transform Interferometry

  • Hitoshi IidaEmail author
  • Moto Kinoshita
  • Yuya Tojima


A Fourier transform terahertz (THz) spectrum analyzer is demonstrated based on a Martin–Puplett interferometer in the frequency range of 0.1–1.5 THz. High dynamic ranges are achieved at room temperature using a Fermi level-managed barrier diode as the detector. Correction for the frequency dependence of power measurements is achieved using a high-pressure mercury lamp by assuming blackbody radiation. The absolute reference level is determined to be 1 mW by comparing with a calibrated power meter at 0.11 THz using a Gunn oscillator as a reference source. Moreover, the power linearities are evaluated by measuring the reference attenuator at different power levels. Consequently, dynamic ranges are quantitatively verified up to 45 dB within the linearity of 0.2–4.9 dB at frequencies of 0.11, 0.22, and 0.33 THz. Harmonics measurements of the Gunn oscillator are also demonstrated.


Terahertz Spectrum analyzer Fourier transform Interferometer Dynamic range Correction Linearity 


Funding Information

This work was supported by JSPS KAKENHI Grant Number JP19K04418 and JP18H01457.


  1. 1.
  2. 2.
    Keysight Technology, Appl. Note 5988-9414EN Accessed 6 June 2019
  3. 3.
  4. 4.
    S. Yokoyama, R. Nakamura, M. Nose, T. Araki, T. Yasui, Opt. Express 16(17), 13502–13061 (2008)CrossRefGoogle Scholar
  5. 5.
    D.-S. Yee, Y. Jang, Y. Kim, D.-C. Seo, Opt. Letters 35(15) 2532–2534 (2010)CrossRefGoogle Scholar
  6. 6.
    Y. Deng, R. Kersting, V. Roytburd, J. Xu, R. Ascazubi, K. Liu, X.-C. Zhang, M. S. Shur, Int’l. J. Infrared and Millimeter Waves 25(2) 215–228 (2004)CrossRefGoogle Scholar
  7. 7.
    L.-J. Chen, T.-F. Kao, J.-Y. Lu, C.-K. Sun, Opt. Express 14(9) 3840–3846 (2006)CrossRefGoogle Scholar
  8. 8.
    M. Bin, D. J. Benford, M. C. Gaidis, T. H. Büttgenbach, J. Zmuidzinas, E. Serabyn, T. G. Phillips, Int’l. J. Infrared and Millimeter Waves 20(3) 383–400 (1999)CrossRefGoogle Scholar
  9. 9.
    Jiang Y., Liang M., Jin B., Kang L., Xu W., Chen J., Wu P., Chin. Sci. Bull. 57(6) 573–578 (2012)CrossRefGoogle Scholar
  10. 10.
    K. Kikuchi, Y. Fujii, J. Inatani, Int’l. J. Infrared and Millimeter Waves 23(7) 1019–1027 (2002)CrossRefGoogle Scholar
  11. 11.
    D. H. Martin, E. Puplett, Infrared Phys. 10(2) 105–109 (1970)CrossRefGoogle Scholar
  12. 12.
    H. Eisele, M. Naftaly, J. R. Fletcher, Meas. Sci. Technol. 18(8) 2623–2628 (2007)CrossRefGoogle Scholar
  13. 13.
    H. Ito, T. Ishibashi, Jpn. J. Appl. Phys. 56(1) 014101 (2017)Google Scholar
  14. 14.
    NTT Electronics, Fermi-level Managed Barrier Diode Module Specification, Specification No. FMB_1 (2018)Google Scholar
  15. 15.
    M. Naftaly, Terahertz Metrology, Artech House, pp. 317–319 (2015)Google Scholar
  16. 16.
    M. F. Kimmitt, J. E. Walsh, C. L. Platt, K. Miller, M. R. F. Jensen, Infrared Phys. Technol. 37(4) 471–477 (1996)CrossRefGoogle Scholar
  17. 17.
    H. Iida, M. Kinoshita, Y. Shimada, H. Kuroda, K. Kitagishi, Y. Izutani, IEEE Trans. Instrum. Meas. 62(6) 1801–1806 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.National Institute of Advanced Industrial Science and TechnologyIbarakiJapan

Personalised recommendations