Terahertz Wave Modulation by Pre-plasma Using Different Laser Wavelength

  • Tong Wu
  • Liquan Dong
  • Rui ZhangEmail author
  • Hang Zhao
  • Yuejin ZhaoEmail author
  • Cunlin Zhang
  • Liangliang Zhang


We report the terahertz (THz) wave modulation from a pre-plasma using different laser wavelengths, which is intersected orthogonally to the two-color laser filament produced by 800-nm laser pulse. When the pre-plasma exists, the THz radiation excited by the two-color field decreases significantly and the modulation depth increases with the increasing modulation pulse wavelength. Moreover, the amplitude reduction at high frequency in THz spectrum and the THz wave polarization change also have the modulation pulse wavelength dependence. These results can be explained by a photocurrent model considering wavelength-dependent ionization rate. The work contributes to further understand the theoretical mechanism of THz wave generation and enrich the practical application of ultrafast THz modulator.


Terahertz Plasma Photoionization Modulation 



The authors acknowledge support from the National Natural Science Foundation of China under grant no. 61905271.

Funding Information

This work was funded by the Beijing Advanced Innovation Center for Imaging Technology and Beijing Natural Science Foundation under Grant No. JQ18015.


  1. 1.
    B. Ferguson and X.-C. Zhang, Nat. Mater. 1, 26 (2002).CrossRefGoogle Scholar
  2. 2.
    L. Ho, M. Pepper, and P. Taday, Nat. Photonics 2, 541 (2008).CrossRefGoogle Scholar
  3. 3.
    N. Karpowicz, J. Dai, X. Lu, Y. Chen, M. Yamaguchi, H. Zhao, X.-C. Zhang, L. Zhang, C. Zhang, and M. Price-Gallagher, Appl. Phys. Lett. 92 (1), 011131 (2008).CrossRefGoogle Scholar
  4. 4.
    R. Zhang, L. Zhang, T. Wu, S. Zuo, R. Wang, C. Zhang, J. Zhang, and J. Fang, Opt. Express. 24 (8), 7915 (2016).CrossRefGoogle Scholar
  5. 5.
    F. Blanchard, A. Doi, T. Tanaka, H. Hirori, H. Tanaka, Y. Kadoya, and K. Tanaka, Opt. Express. 19 (9), 8277 (2011).CrossRefGoogle Scholar
  6. 6.
    K.-Y. Kim, A. Taylor, J. Glownia, and G. Rodriguez, Nature. Photon. 2 (10), 605 (2008).CrossRefGoogle Scholar
  7. 7.
    V. Andreeva, O. Kosareva, N. Panov, D. Shipilo, P. Solyankin, M. Esaulkov, P. G. de Alaiza Martínez, A. Shkurinov, V. Makarov, and L. Bergé, Phys. Rev. Lett. 116 (6), 063902 (2016).CrossRefGoogle Scholar
  8. 8.
    W. M. Wang, P. Gibbon, Z. M. Sheng, and Y. T. Li, Phys. Rev. Lett. 114 (25), 253901 (2015).CrossRefGoogle Scholar
  9. 9.
    L.-L. Zhang, W.-M. Wang, T. Wu, R. Zhang, S.-J. Zhang, C.-L. Zhang, Y. Zhang, Z.-M. Sheng, and X.-C. Zhang, Phys. Rev. Lett. 119 (23), 235001 (2017).CrossRefGoogle Scholar
  10. 10.
    X. Xie, J. Dai, and X.-C. Zhang, Phys. Rev. Lett. 96, 075005 (2006).CrossRefGoogle Scholar
  11. 11.
    K. Y. Kim, J. H. Glownia, A. J. Taylor, and G. Rodriguez, Opt. Express 15, 4577–4584 (2007).CrossRefGoogle Scholar
  12. 12.
    K. Y. Kim, Physics of Plasmas, 16, 056706 (2009).CrossRefGoogle Scholar
  13. 13.
    Y. Minami, M. Nakajima, and T. Suemoto, Phys. Rev. A 83, 023828 (2011).CrossRefGoogle Scholar
  14. 14.
    Y.-S. You and K.-Y. Kim, presented at the International Conference on Ultrafast Phenomena (2010).Google Scholar
  15. 15.
    J. Das and M. Yamaguchi, J. Opt. Soc. Am. B 30, 1595 (2013).CrossRefGoogle Scholar
  16. 16.
    H. Wen, D. Daranciang, and A. M. Lindenberg, Appl. Phys. Lett. 96, 161103 (2010).CrossRefGoogle Scholar
  17. 17.
    B. He, J. Nan, M. Li, S. Yuan, and H. Zeng, Opt. Lett. 42 (5), 967 (2017).CrossRefGoogle Scholar
  18. 18.
    M. Clerici, M. Peccianti, B. E. Schmidt, L. Caspani, M. Shalaby, M. Giguère, A. Lotti, A. Couairon, F. Légaré, T. Ozaki, D. Faccio, and R. Morandotti, Phys. Rev. Lett. 110, 253901 (2013).CrossRefGoogle Scholar
  19. 19.
    S. Zhang, L. Zhang, H. Zhao, T. Wu, C. Zhang, and Y. Zhao, Appl Phys Lett 111, 111104 (2017).CrossRefGoogle Scholar
  20. 20.
    T. Wu, L. Dong, S. Huang, R. Zhang, S. Zhang, H. Zhao, C. Zhang, Y. Zhao, and L. Zhang, Appl. Phys. Lett. 112 (17), 171106 (2018).CrossRefGoogle Scholar
  21. 21.
    L. Zhang, S. Zhang, R. Zhang, T. Wu, Y. Zhao, C. Zhang, and X.-C. Zhang, Opt. Express 25, 32346 (2017).CrossRefGoogle Scholar
  22. 22.
    A. Couairon and A. Mysyrowicz, Phys. Rep. 441, 47 (2007).CrossRefGoogle Scholar
  23. 23.
    A. M. Perelomov, V. S. Popov, and M. V. Terent’ev, Sov. Phys. JETP 23(5), 924 (1966).Google Scholar
  24. 24.
    R. Rankin, Opt. Lett. 16, 835 (1991).CrossRefGoogle Scholar
  25. 25.
    W. Leemans, C. Clayton, W. Mori, K. Marsh, P. Kaw, A. Dyson, C. Joshi, and J. Wallace, Phys. Rev. A 46 (2), 1091 (1992).CrossRefGoogle Scholar
  26. 26.
    S. Rae, Opt. Commun. 97 (1–2), 25 (1993).CrossRefGoogle Scholar
  27. 27.
    H. Wen and A. M. Lindenberg, Phys. Rev. Lett. 103, 023902 (2009).CrossRefGoogle Scholar
  28. 28.
    J. Dai, N. Karpowicz and X.-C. Zhang, Phys. Rev. Lett. 103, 023001 (2009).CrossRefGoogle Scholar
  29. 29.
    J. Dai, X. Xie, and X.-C. Zhang, Phys. Rev. Lett. 97, 103903 (2006).CrossRefGoogle Scholar
  30. 30.
    J. Liu and X.-C. Zhang, Phys. Rev. Lett. 103, 235002 (2009).CrossRefGoogle Scholar
  31. 31.
    N. C. J. van der Valk, W. A. M. van der Marel, and P. C. M. Planken, Opt. Lett. 30, 2802 (2005).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and PhotonicsBeijing Institute of TechnologyBeijingChina
  2. 2.Shenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhenChina
  3. 3.Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Beijing Key Laboratory for Terahertz Spectroscopy and Imaging, and Beijing Advanced Innovation Center for Imaging Technology, Department of PhysicsCapital Normal UniversityBeijingChina

Personalised recommendations