Advertisement

Terahertz to Mid-infrared Dielectric Properties of Polymethacrylates for Stereolithographic Single Layer Assembly

  • Serang ParkEmail author
  • Yanzeng Li
  • Daniel B. Fullager
  • Stefan Schöche
  • Craig M. Herzinger
  • Glenn D. Boreman
  • Tino Hofmann
Article
  • 84 Downloads

Abstract

The fabrication of terahertz (THz) optics with arbitrary shapes via polymethacrylate-based stereolithography is very attractive as it may offer a rapid, low-cost avenue towards optimized THz imaging applications. In order to design such THz optical components appropriately, accurate knowledge of the complex dielectric function of the materials used for stereolithographic fabrication is crucial. In this paper, we report on the complex dielectric functions of several polymethacrylates frequently used for stereolithographic fabrication. Spectroscopic ellipsometry data sets from the THz to mid-infrared spectral range were obtained from isotropically cross-linked polymethacrylate samples. The data sets were analyzed using stratified layer optical model calculations with parameterized model dielectric functions. While the infrared spectral range is dominated by a number of strong absorption features with Gaussian profiles, these materials are found to exhibit only weak absorption in the THz frequency range. In conclusion, we find that thin transmissive THz optics can be efficiently fabricated using polymethacrylate-based stereolithographic fabrication.

Keywords

Stereolithography THz Infrared Ellipsometry Polymethacrylates Rapid prototyping 

Notes

Acknowledgments

SP, YL, and TH would like to acknowledge the valuable discussions with Susanne Lee and Erin Sharma within the NSF IUCRC for Metamaterials.

Funding Information

The authors are grateful for support from the National Science Foundation (1624572) within the I/UCRC Center for Metamaterials, the Swedish Agency for Innovation Systems (2014-04712), and Department of Physics and Optical Science of the University of North Carolina at Charlotte.

References

  1. 1.
    A. Squires, E. Constable, and R. A. Lewis, ., J. Infrared, Millimeter, Terahertz Waves 36 (2015), 72.Google Scholar
  2. 2.
    M. Weidenbach, D. Jahn, A. Rehn, S. F. Busch, F. Beltrán-Mejía, J. C. Balzer, and M. Koch, ., Opt. Express 24 (2016), 28968.Google Scholar
  3. 3.
    A. Kaur, J. C. Myers, M. I. M. Ghazali, J. Byford, and P. Chahal, ., 2015. In: 2015 IEEE 65th Electronic Components and Technology Conference (ECTC), 2071–2076.Google Scholar
  4. 4.
    S. Busch, M. Weidenbach, M. Fey, F. Schäfer, T. Probst, and M. Koch, ., J. Infrared, Millimeter, Terahertz Waves 35 (2014), 993.Google Scholar
  5. 5.
    S. F. Busch, M. Weidenbach, J. C. Balzer, and M. Koch, ., J. Infrared, Millimeter, Terahertz Waves 37 (2016), 303.Google Scholar
  6. 6.
    W. D. Furlan, V. Ferrando, J. A. Monsoriu, P. Zagrajek, E. Czerwińska, and M. Szustakowski, ., Opt. Lett. 41 (2016), 1748.Google Scholar
  7. 7.
    K. Y. Park, N. Wiwatcharagoses, and P. Chahal, ., 2013. 2013 IEEE 63rd Electronic Components and Technology Conference, 1912–1919.Google Scholar
  8. 8.
    X. Yan and P. Gu, ., Computer-Aided Design 28 (1996), 307.Google Scholar
  9. 9.
    T. C. Okwuosa, B. C. Pereira, B. Arafat, M. Cieszynska, A. Isreb, and M. A. Alhnan, ., Pharmaceutical Research 34 (2017), 427.Google Scholar
  10. 10.
    B. Zhang, Y. Guo, H. Zirath, and Y. P. Zhang, ., Proceedings of the IEEE 105 (2017), 723.Google Scholar
  11. 11.
    T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Nguyen, and D. Hui, ., Composites Part B: Engineering 143 (2018), 172.Google Scholar
  12. 12.
    A. I. Shallan, P. Smejkal, M. Corban, R. M. Guijt, and M.C. Breadmore, . Analytical Chemistry (2014).Google Scholar
  13. 13.
    W. J. Otter and S. Lucyszyn, ., Proceedings of the IEEE 105 (2017), 756.Google Scholar
  14. 14.
    D. B. Fullager, S. Park, C. Hovis, Y. Li, J. Reese, E. Sharma, S. Lee, C. Evans, G. D. Boreman, and T. Hofmann, ., Journal of Infrared, Millimeter, and Terahertz Waves 40 (2019), 269.Google Scholar
  15. 15.
    H. Fujiwara, Spectroscopic Ellipsometry: Principles and Applications, Wiley, New York, 2007.Google Scholar
  16. 16.
    D. B. Fullager, G. D. Boreman, and T. Hofmann, ., Opt. Mater. Express 7 (2017), 888.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Physics and Optical ScienceUniversity of North Carolina at CharlotteCharlotteUSA
  2. 2.LasertelTucsonUSA
  3. 3.J. A. Woollam Co. Inc.LincolnUSA
  4. 4.Department of Physics, Chemistry, and Biology (IFM), THz Materials Analysis CenterLinköping UniversityLinköpingSweden

Personalised recommendations