Computational Image Enhancement for Frequency Modulated Continuous Wave (FMCW) THz Image

  • Tak Ming WongEmail author
  • Matthias Kahl
  • Peter Haring Bolívar
  • Andreas Kolb


In this paper, a novel method to enhance Frequency Modulated Continuous Wave (FMCW) THz imaging resolution beyond its diffraction limit is proposed. Our method comprises two stages. Firstly, we reconstruct the signal in depth-direction using a sinc-envelope, yielding a significant improvement in depth estimation and signal parameter extraction. The resulting high-precision depth estimate is used to deduce an accurate reflection intensity THz image. This image is fed in the second stage of our method to a 2D blind deconvolution procedure, adopted to enhance the lateral THz image resolution beyond the diffraction limit. Experimental data acquired with a FMCW system operating at 577 GHz with a bandwidth of 126 GHz shows that the proposed method enhances the lateral resolution by a factor of 2.29 to 346.2 μm with respect to the diffraction limit. The depth accuracy is 91 μm. Interestingly, the lateral resolution enhancement achieved with this blind deconvolution concept leads to better results in comparison with conventional gaussian deconvolution. Experimental data on a PCB resolution target is presented, in order to quantify the resolution enhancement and to compare the performance with established image enhancement approaches. The presented technique allows exposure of the interwoven fiber reinforced embedded structures of the PCB test sample.


Terahertz Frequency Modulated Continuous Wave (FMCW) Resolution enhancement Deconvolution Parameter extraction 


Funding Information

This research was funded by the German Research Foundation (DFG) as part of the research training group GRK 1564 Imaging New Modalities.


  1. 1.
    Hu, B.B., Nuss, M.C.: Imaging with terahertz waves. Optics letters 20(16), 1716–1718 (1995).Google Scholar
  2. 2.
    Siegel, P.H.: Terahertz technology. IEEE Transactions on microwave theory and techniques 50(3), 910–928 (2002).Google Scholar
  3. 3.
    Chan, W.L., Deibel, J., Mittleman, D.M.: Imaging with terahertz radiation. Reports on progress in physics 70(8), 1325 (2007).Google Scholar
  4. 4.
    Jansen, C., Wietzke, S., Peters, O., Scheller, M., Vieweg, N., Salhi, M., Krumbholz, N., Jördens, C., Hochrein, T., Koch, M.: Terahertz imaging: applications and perspectives. Appl. Opt. 49(19), E48–E57 (2010).Google Scholar
  5. 5.
    Cooper, K.B., Dengler, R.J., Llombart, N., Thomas, B., Chattopadhyay, G., Siegel, P.H.: Thz imaging radar for standoff personnel screening. IEEE Transactions on Terahertz Science and Technology 1(1), 169–182 (2011).Google Scholar
  6. 6.
    McClatchey, K., Reiten, M., Cheville, R.: Time resolved synthetic aperture terahertz impulse imaging. Applied physics letters 79(27), 4485–4487 (2001).Google Scholar
  7. 7.
    Ding, J., Kahl, M., Loffeld, O., Haring Bolívar, P.: Thz 3-d image formation using sar techniques: simulation, processing and experimental results. IEEE Transactions on Terahertz Science and Technology 3(5), 606–616 (2013).Google Scholar
  8. 8.
    Kahl, M., Keil, A., Peuser, J., Löffler, T., Pätzold, M., Kolb, A., Sprenger, T., Hils, B., Haring Bolívar, P.: Stand-off real-time synthetic imaging at mm-wave frequencies. In: Passive and Active Millimeter-Wave Imaging XV, vol. 8362, p. 836208 (2012).Google Scholar
  9. 9.
    Ahi, K., Asadizanjani, N., Shahbazmohamadi, S., Tehranipoor, M., Anwar, M.: Terahertz characterization of electronic components and comparison of terahertz imaging with x-ray imaging techniques 9483 (2015).Google Scholar
  10. 10.
    Johnson, J.L., Dorney, T.D., Mittleman, D.M.: Interferometric imaging with terahertz pulses. IEEE Journal of selected topics in quantum electronics 7(4), 592–599 (2001).Google Scholar
  11. 11.
    Chen, H.T., Kersting, R., Cho, G.C.: Terahertz imaging with nanometer resolution. Applied Physics Letters 83(15), 3009–3011 (2003).Google Scholar
  12. 12.
    Xu, L.M., Fan, W.H., Liu, J.: High-resolution reconstruction for terahertz imaging. Applied optics 53(33), 7891–7897 (2014).Google Scholar
  13. 13.
    Li, Y., Li, L., Hellicar, A., Guo, Y.J.: Super-resolution reconstruction of terahertz images. In: SPIE Defense and Security Symposium, pp. 69490J–69490J. International Society for Optics and Photonics (2008).Google Scholar
  14. 14.
    Ding, S.H., Li, Q., Yao, R., Wang, Q.: High-resolution terahertz reflective imaging and image restoration. Applied optics 49(36), 6834–6839 (2010).Google Scholar
  15. 15.
    Hou, L., Lou, X., Yan, Z., Liu, H., Shi, W.: Enhancing terahertz image quality by finite impulse response digital filter. In: Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 2014 39th International Conference on, pp. 1–2. IEEE (2014).Google Scholar
  16. 16.
    Ahi, K., Anwar, M.: Developing terahertz imaging equation and enhancement of the resolution of terahertz images using deconvolution. In: SPIE Commercial+ Scientific Sensing and Imaging, pp. 98560N–98560N. International Society for Optics and Photonics (2016).Google Scholar
  17. 17.
    Walker, G.C., Bowen, J.W., Labaune, J., Jackson, J.B., Hadjiloucas, S., Roberts, J., Mourou, G., Menu, M.: Terahertz deconvolution. Optics express 20(25), 27230–27241 (2012).Google Scholar
  18. 18.
    Chen, Y., Huang, S., Pickwell-MacPherson, E.: Frequency-wavelet domain deconvolution for terahertz reflection imaging and spectroscopy. Optics express 18(2), 1177–1190 (2010).Google Scholar
  19. 19.
    Takayanagi, J., Jinno, H., Ichino, S., Suizu, K., Yamashita, M., Ouchi, T., Kasai, S., Ohtake, H., Uchida, H., Nishizawa, N., et al.: High-resolution time-of-flight terahertz tomography using a femtosecond fiber laser. Optics express 17(9), 7533–7539 (2009).Google Scholar
  20. 20.
    Lucy, L.B.: An iterative technique for the rectification of observed distributions. The astronomical journal 79, 745 (1974).Google Scholar
  21. 21.
    Richardson, W.H.: Bayesian-based iterative method of image restoration. JOSA 62(1), 55–59 (1972).Google Scholar
  22. 22.
    Knobloch, P., Schildknecht, C., Kleine-Ostmann, T., Koch, M., Hoffmann, S., Hofmann, M., Rehberg, E., Sperling, M., Donhuijsen, K., Hein, G., et al.: Medical thz imaging: an investigation of histo-pathological samples. Physics in Medicine & Biology 47(21), 3875 (2002).Google Scholar
  23. 23.
    Xie, Y.Y., Hu, C.H., Shi, B., Man, Q.: An adaptive super-resolution reconstruction for terahertz image based on mrf model. In: Applied Mechanics and Materials, vol. 373, pp. 541–546. Trans Tech Publ (2013).Google Scholar
  24. 24.
    Gu, S., Li, C., Gao, X., Sun, Z., Fang, G.: Three-dimensional image reconstruction of targets under the illumination of terahertz gaussian beam—theory and experiment. IEEE Transactions on Geoscience and Remote Sensing 51(4), 2241–2249 (2013).Google Scholar
  25. 25.
    Dong, J., Wu, X., Locquet, A., Citrin, D.S.: Terahertz superresolution stratigraphic characterization of multilayered structures using sparse deconvolution. IEEE Transactions on Terahertz Science and Technology 7(3), 260–267 (2017).Google Scholar
  26. 26.
    Sun, Z., Li, C., Gu, S., Fang, G.: Fast three-dimensional image reconstruction of targets under the illumination of terahertz gaussian beams with enhanced phase-shift migration to improve computation efficiency. IEEE Transactions on Terahertz Science and Technology 4(4), 479–489 (2014).Google Scholar
  27. 27.
    Liu, W., Li, C., Sun, Z., Zhang, Q., Fang, G.: A fast three-dimensional image reconstruction with large depth of focus under the illumination of terahertz gaussian beams by using wavenumber scaling algorithm. IEEE Transactions on Terahertz Science and Technology 5(6), 967–977 (2015).Google Scholar
  28. 28.
    Standard, M.: Photographic lenses (1959).
  29. 29.
    Munson, D.C., Visentin, R.L.: A signal processing view of strip-mapping synthetic aperture radar. IEEE Transactions on Acoustics, Speech, and Signal Processing 37(12), 2131–2147 (1989).Google Scholar
  30. 30.
    Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM Journal on optimization 6(2), 418–445 (1996).Google Scholar
  31. 31.
    Xu, L., Jia, J.: Two-phase kernel estimation for robust motion deblurring. In: European conference on computer vision, pp. 157–170. Springer (2010).Google Scholar
  32. 32.
    Xu, L., Zheng, S., Jia, J.: Unnatural l0 sparse representation for natural image deblurring. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1107–1114 (2013).Google Scholar
  33. 33.
    Levin, A., Weiss, Y., Durand, F., Freeman, W.T.: Understanding blind deconvolution algorithms. IEEE transactions on pattern analysis and machine intelligence 33(12), 2354–2367 (2011).Google Scholar
  34. 34.
    Perrone, D., Favaro, P.: Total variation blind deconvolution: The devil is in the details. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2909–2916 (2014).Google Scholar
  35. 35.
  36. 36.
    Hunsche, S., Koch, M., Brener, I., Nuss, M.: Thz near-field imaging. Optics communications 150(1), 22–26 (1998).Google Scholar
  37. 37.
    Forshaw, M., Haskell, A., Miller, P., Stanley, D., Townshend, J.: Spatial resolution of remotely sensed imagery a review paper. International Journal of Remote Sensing 4(3), 497–520 (1983).Google Scholar
  38. 38.
    Boreman, G.D.: Modulation transfer function in optical and electro-optical systems, vol. 21. SPIE press Bellingham, WA (2001).Google Scholar
  39. 39.
    Smith, W.J.: Modern optical engineering. Tata McGraw-Hill Education (1966).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Center for Sensor Systems (ZESS)University of SiegenSiegenGermany
  2. 2.Computer Graphics and Multimedia Systems GroupUniversity of SiegenSiegenGermany
  3. 3.Institute for High Frequency and Quantum Electronics (HQE)University of SiegenSiegenGermany

Personalised recommendations